ASSOCIATION FOR ENERGY AFFORDABILITY 날

Multifamily Central Heat Pump Water Heating

Stories from the Field

Nick Young (he/him) Director, Zero Carbon Buildings October 24, 2023

NEEA Product Council

About AEA

Electrify Existing Central Fossil Fuel Domestic Hot Water

Funding

Project Funding Sources

New York Projects

Project Sites – New York

Site	Install Type	Dwelling Units	HPWH Product	Recovery (btu/hr)	Storage Volume (gal)	Storage Ratio (gal/ton)	Status
Bronx 1	Retrofit	65	Lync	988k	975	12	Construction Complete – Pending electrical service
Bronx 2	Retrofit	38	Lync	658k	585	11	Construction Complete – Pending electrical service
Bronx 3	Retrofit	40	Lync	658k	575	10	Construction Complete – Pending electrical service
Bronx 4	Retrofit	21	Lync	420k	585	17	Construction Complete – Pending electrical service
Bronx 5	Retrofit	38	Aermec	455k	475	13	Construction complete \ Pending Control Wiring & Electrical service
Far Rockaway	Retrofit	119	Lync	988k	1500	18	Construction Complete - Pending Startup (10/17/2023)
Manhattan	Retrofit	50	Mitsubishi	408k	900	26	Construction Complete - Pending electrical service

Bronx 1

000

WATER

0

0

Energia Contraction

H

3

費

Bronx 5

-0

1

Persite

Manhattan

Manhattan 2

SPACEPAC

ALC: N

Smith

-

1 × 1

SPACEPAC

will Inventer

California Projects

Project Sites - California

Site	Install Type	Dwelling Units	HPWH Product	Recovery (btu/hr)	Storage Volume (gal)	Storage Ratio (gal/ton)	Status
San Francisco 1	Retrofit	81	Mitsubishi	273k	357	16	Complete
San Francisco 2	Retrofit	133	Mitsubishi	273k	2,150	95	Complete
San Francisco 3	Retrofit	119	Mitsubishi	273k	1,350	59	Complete
East Palo Alto	Retrofit Retrofit	28 20	Mitsubishi	273k 273k	300 300	13 13	Complete
San Diego	Retrofit	74	Mitsubishi	273k	785	35	Contracting
Fontana	Retrofit	90	Mitsubishi	136k 136k	300 600	26 52	Contracting
Fresno	Retrofit	53 53	WaterDrop	139k 139k	505 505	44 44	Commissioning

San Francisco 1

CHECK

111.

PEIS

2.1

1 ...

OF WATER

al T 0.0

San Francisco 3

MISURION

East Palo Alto

Lync Aegis A

		Models			
		250	350	500	
Refrigerant	R744 (CO ₂)				
Capacity (77°F ambient)	MBH	210	329	494	
Capacity (14°F ambient)	MBH	133	223	310	
Input Power	kW	16.1	26.8	41.9	
Power Supply		480 V / 3 ph / 60 Hz			
Sound Pressure	dB(A)	68	73	76	
Configuration		HP, Second	lary Hx Skic	l, Tank(s)	
Storage Volume	Gal		250, 500		

Mitsubishi Heat₂O

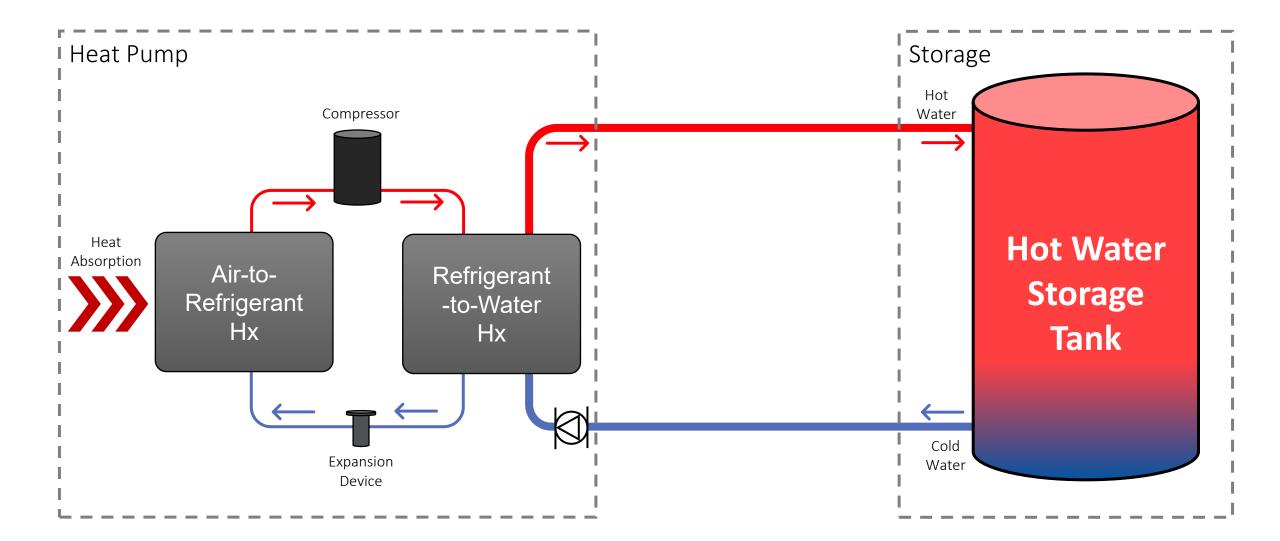
MITSUBISHI ELECTRIC TRANE HVAC US

		Model
		QAHV
Refrigerant		R744 (CO ₂)
Capacity (77°F ambient)	MBH	136
Capacity (15°F ambient)	MBH	136
Input Power	kW	16.1
Power Supply		208/230V* / 3 ph / 60 Hz
Sound Pressure	dB(A)	56
Configuration		HP, Secondary Hx (Skid), Tank(s)
Storage Volume	Gal	*480V will7be 2005 all able in future

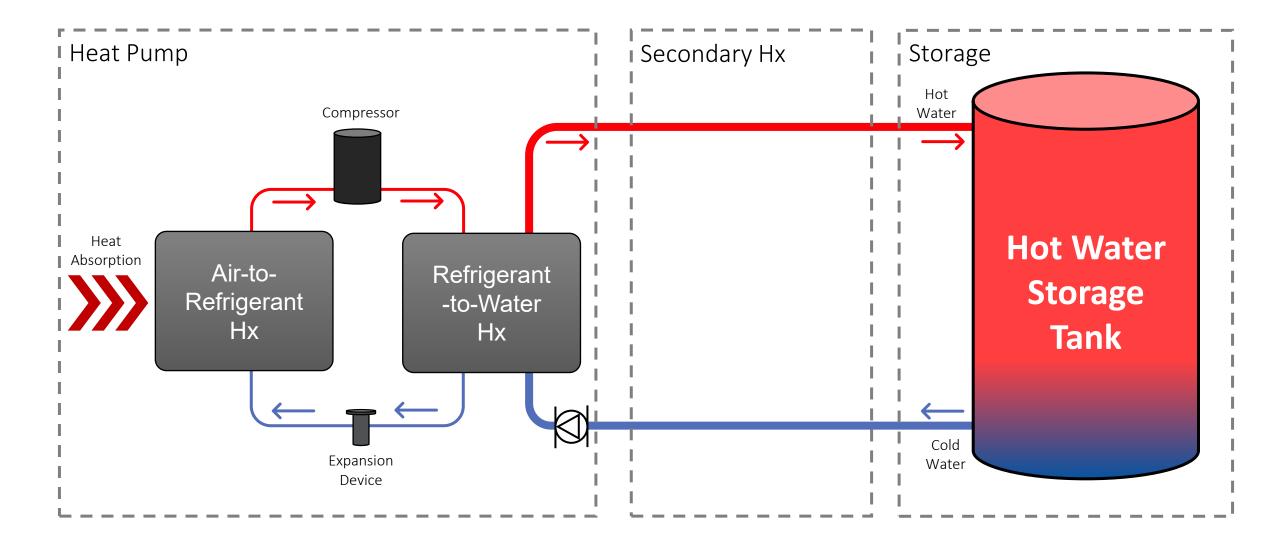
Aermec NRK700

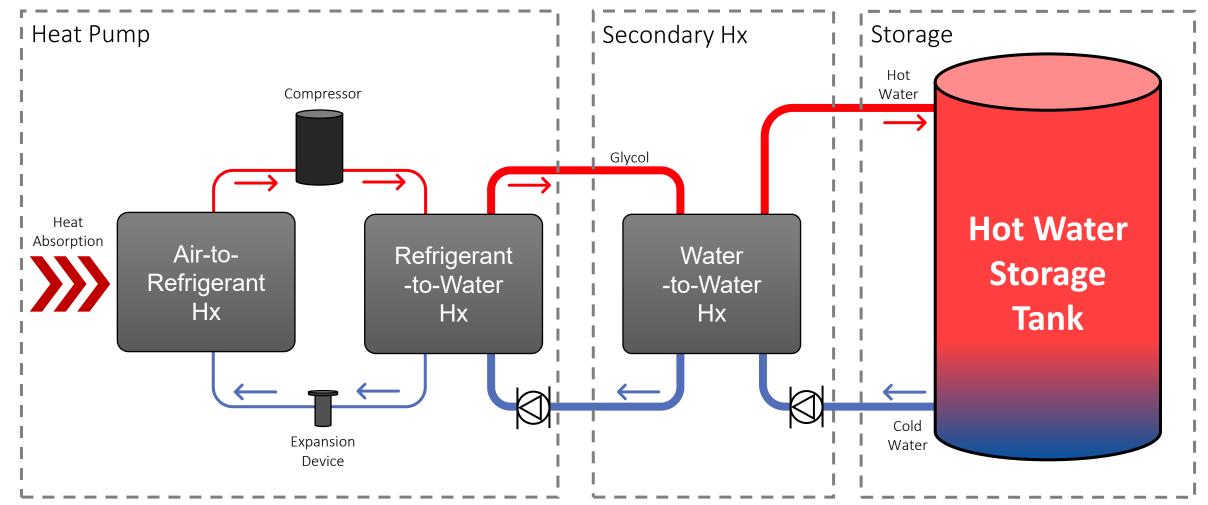
		Model
		Aermec NRK700
Refrigerant		R410A
Capacity (45°F ambient)	MBH	593
Capacity (12°F ambient)	MBH	455
Input Power (45°F ambient)	kW	57.2
Power Supply		460V* / 3 ph / 60 Hz
Sound Pressure	dB(A)	59.9 at 33ft
Configuration		2-pipe heat pump unit
Storage Volume		Custom engineered per project

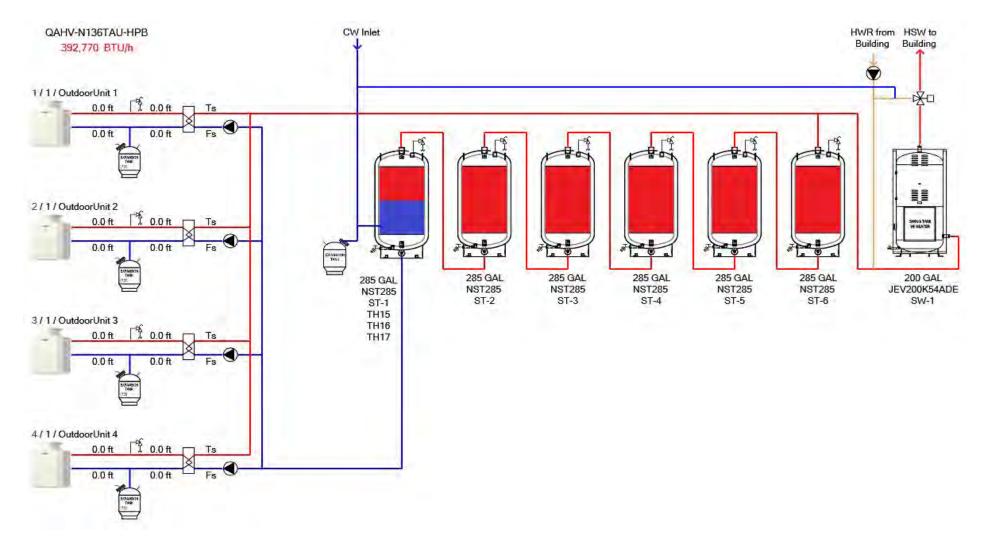
WaterDrop



		Model
		WaterDrop / Droplet
Refrigerant		R744 (CO ₂)
Capacity (77°F ambient)	MBH	31-185
Capacity (15°F ambient)	MBH	31-185
Input Power	kW	16.1
Power Supply		208/230V* / 3 ph / 60 Hz
Sound Pressure	dB(A)	37 per HP (up to 12)
Configuration		Factory-Built Skid
Storage Volume	Gal	175, 285, 500


Components


Basic HPWH Components


HPWH + Secondary Heat Exchanger

HPWH + Secondary Heat Exchanger

Full System Diagram Example

Design Considerations

Impact of Outdoor Air Temperature

Rated Capacity vs. Needed Capacity

H2O inlet temperature (f)	40	40	40	40	40	40	40	40	40	40
H2O outlet temperature (f)	130	140	140	140	140	140	140	140	140	140
Ambient DB (f)	10	24	30	40	50	60	70	30	90	100
Ambient RH	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%
Heating capacity (kbtu/h)	98	126	141	171	205	241	287	333	351	351
Cooling capacity (kbtu/h)	60	76	88	112	140	171	211	252	269	269
Unit heating COP	2.4	2.4	2.5	2.8	3.0	3.2	3.4	3.6	3.8	3.9
H2O flow rate (gpm)	2.2	2.5	2.8	3.4	4.1	4.8	5.7	ô.6	7.0	7.0
H2O flow rate (gph)	130	151	169	205	245	288	343	399	420	420

e360a performance for 140F LWT

Pay Attention when sizing and selecting equipment!

Sizing Example – Aermec NYK

PERFORMANCE SPECIFICATIONS

AERMEC – NYK Series

547 507
547 507
3.47 507
347,087
35.02
53
2.904
62.09
243,246
34.43
2,071
62.09

Reference conditions: AHRI std 550/590 I-P; Service side water 54.0°F / 44.0°F; Outside air 95°F
Reference conditions: AHRI std 550/590 I-P; Service side water * °F / 120.0°F; Outside air 47°F

(3) Reference conditions: AHRI std 550/590 I-P: Service side water * °F / 120.0 °F: Outside air 17 °F

29% DIFFERENCE

NVK COO

Sizing Example – Aermec NYK

Property with 500,000 btu/hr of domestic hot water load.

To meet load:

New York

•3x Aermec NYK 500 units

San Francisco

•2x Aermec NYK 500 units

But with more storage capacity, you could install **2 in NYC** and **1 in SF** and meet your needs.

Audience Challenge: Rated Capacity

Aegis A Specifications

What is the nominal rated capacity in MBH of the "500" unit below?

At what outdoor temperature?


			250	350	500
	Nominal Heating Capacity** @ 77°F air	MBH	210	329	494
	Input Power**	kW	16.1	26.8	41.9
	Nominal Recovery Capacity	GPH	233	365	549
	COP		3.8	3.6	3.5
	Outlet water temperature range		140-185°F		
Derformence	Ambient temperature range			-4-113°F	
Performance				0.00E	

Electrical Capacity

Electrical Upgrades May Be Needed

Depending on added electrical load, may need to upgrade electrical service

Heat Pump Electrical Requirements

nv/e

Lync	rs		250	350	500
Electric	FLA	A	35.4	38.8	73.8
	MCA	A	55	72	110
	MOP	A	80	110	175
	Power Supply		480 V / 3 ph / 60 Hz		Hz

Voltage	Total RLA	Wire & Disconnect Sizing			
	(Compressor + Fan)	MCA	MOCP/MFS		
208-230/3/60	105	135	150		
440-480/3/60	52	67	70		

Heat Pump Electrical Requirements

Unit Type		QAHV-N136TAU-HPB(-BS)
Nominal Heating Capacity (208/230∨)	Btu/h (kW)	136,480 (40)
Guaranteed Operating Range *1	°F (°C)	-13 to 109.4 (-25 to 43)
Outlet Water Tempertaure Range	Primary Circuit only, °F (°C)	120 to 176 (48.9 to 80)
Outlet Water rempertaure Range	With secondary HEX, °F (°C)	120 to 158 (48.9 to 70)
Inlet Water Temperature Range	°F (°C)	41 to 145 (5 to 62.7)
External Dimensions (H x W x D)	In. (mm)	72.3 x 48.0 x 29.9 (1837 x 1220 x 760)
Net Weight (Dry)	Lbs. (kg)	868 (394)
Operating Weight	Lbs. (kg)	882 (400)
External Finish		Acrylic painted steel plate <munsell 1="" 5y="" 8="" or="" similar=""></munsell>
Electrical Power Requirements	Voltage, Phase, Hertz	208/230∨, 3-Phase, 60Hz
Minimum Circuit Ampacity (MCA)	A	67
Maximum Overcurrent Protection (MOP)	A	110

Heat Pump Electrical Requirements

	by WATTS		250	350	500
Electric	FLA	A	35.4	38.8	73.8
	MCA	A	55	72	110
	MOP	A	80	110	175
	Power Supply		480 V / 3 ph / 60 Hz		

480 V unit will require step up transformer.

Considerations:

- Cost
- Noise
- If multiple heat pump units one large transformer vs individual transformer for each outdoor unit


Electrical Upgrades

ON

W OFF

CN

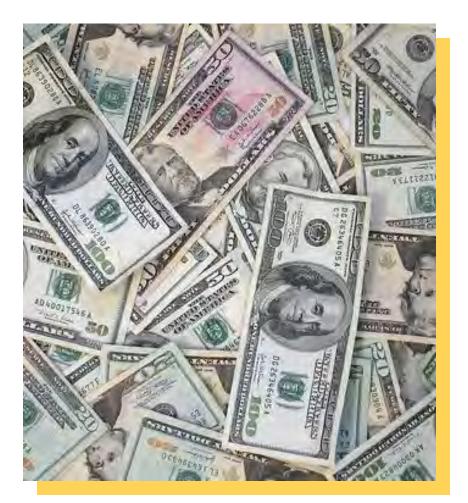
-

....

NATION

82

Utility Costs


Utility Costs

When calculating utility cost, do not forget to include **demand charges**!

• More heat pumps = higher demand charges

Also look into future **electrical rate changes** or potential to switch to different electric rates to reduce costs.

More reasons to **minimize heat pumps** and **maximize storage** capacity.

Equipment Location

Indirect Gas DHW vs HPWH

Generating domestic hot water with a **steam boiler** only requires a tankless coil.

Takes up virtually no space in the building.

Indirect Gas DHW vs HPWH

Generating domestic hot water with **heat pumps** requires outdoor units, storage tanks, heat exchangers, and electrical equipment.

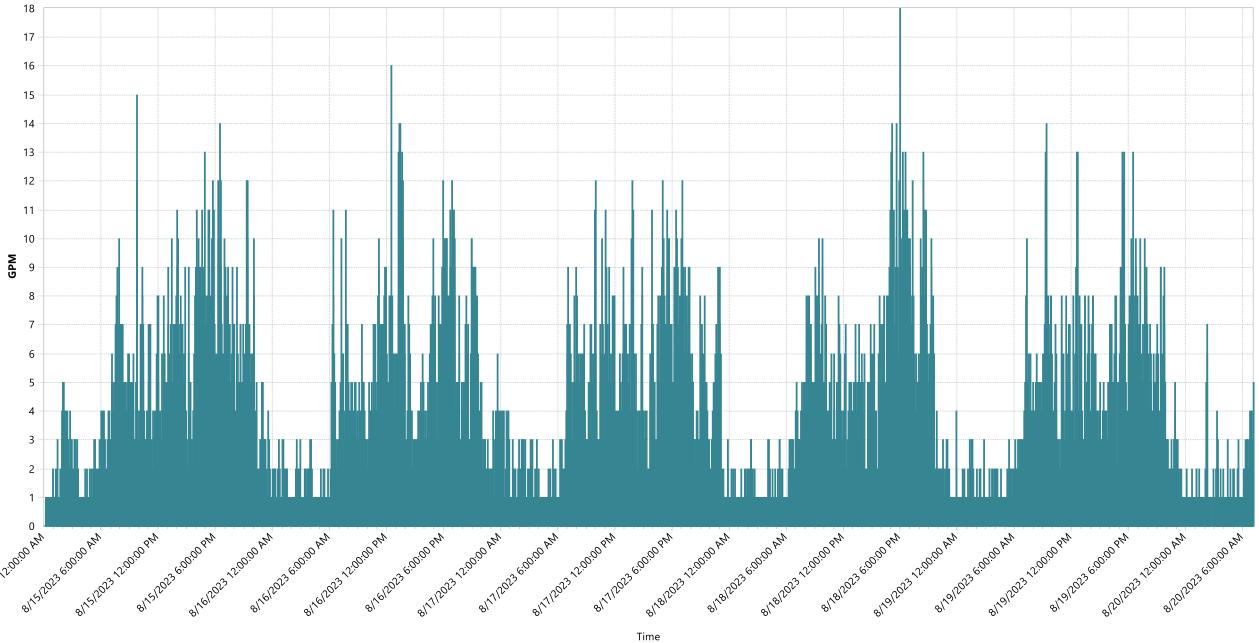


Performance Data

San Francisco

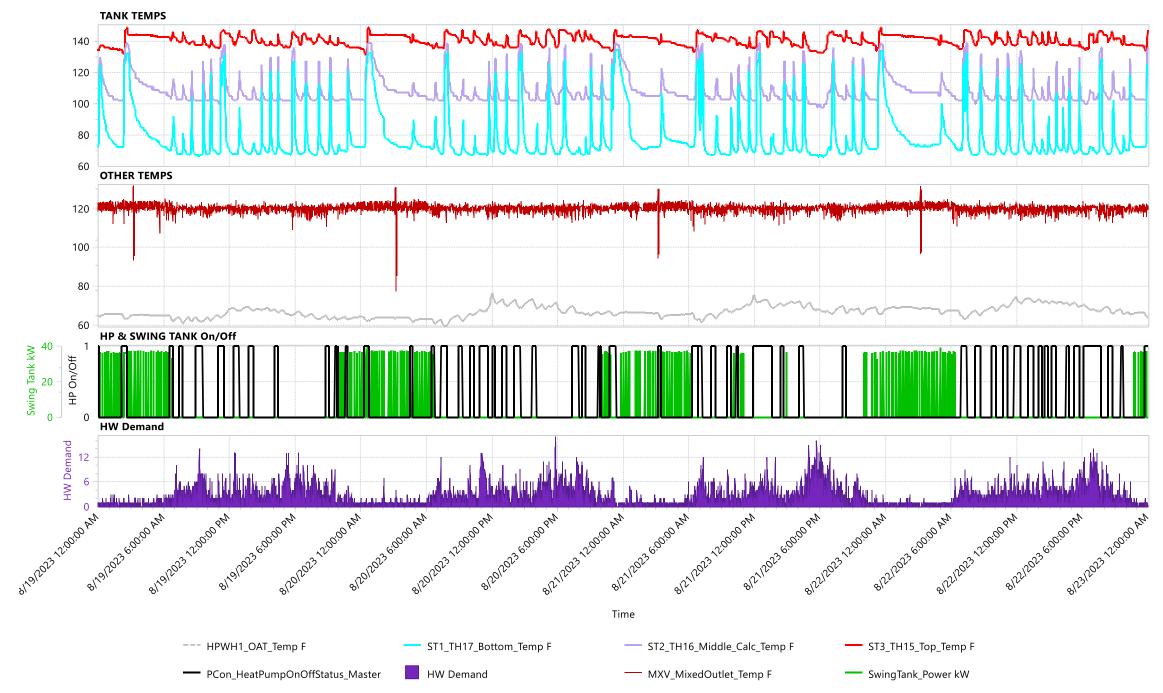
11111 (11)

NO MATE

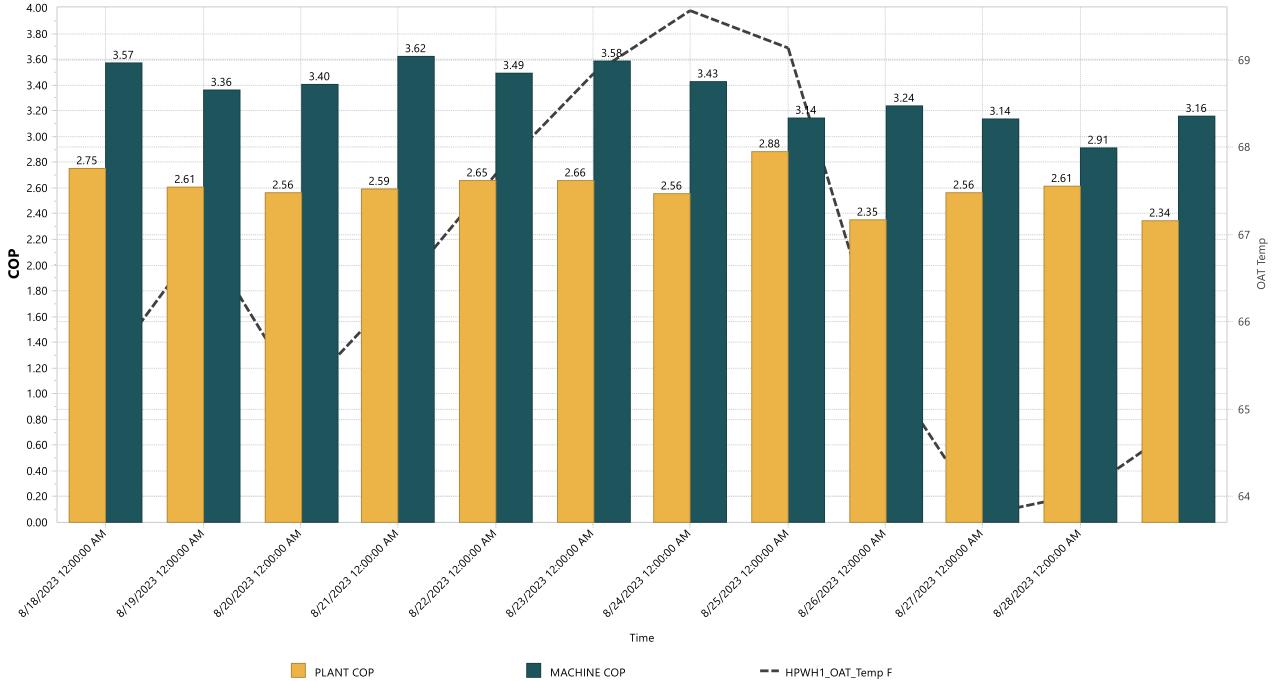

11.000

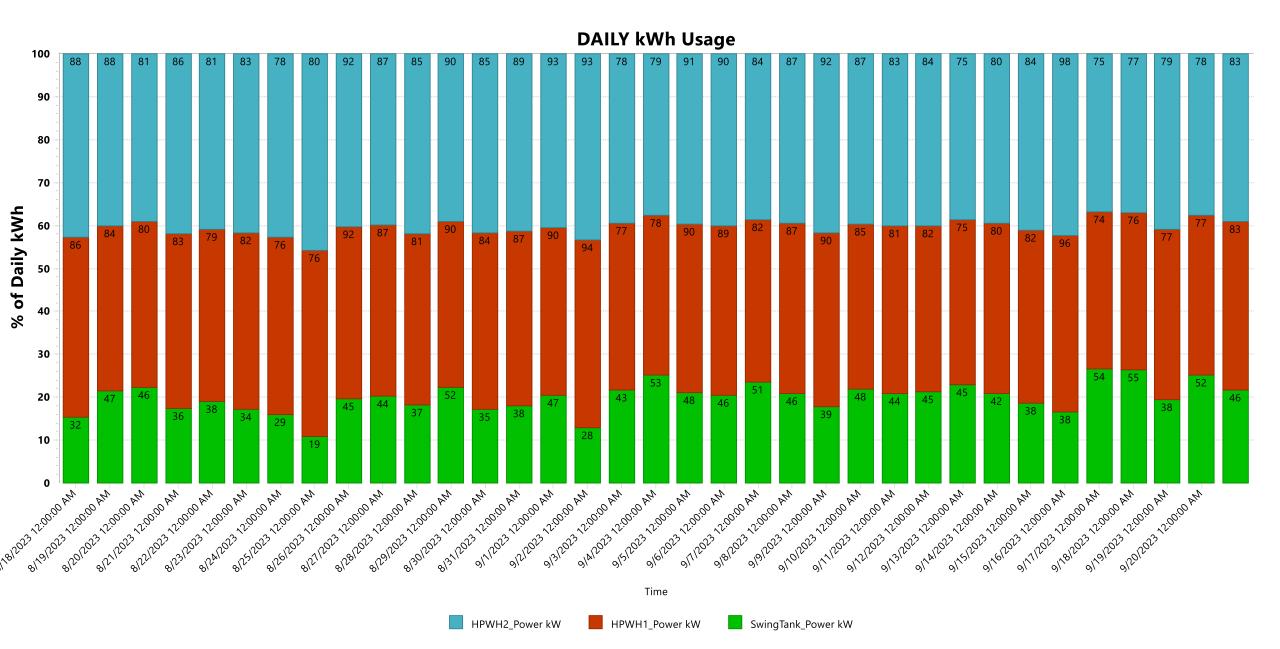
11

DECE


EEE

HW Demand Profile (GPM)





PLANT OPERATION

DAILY PLANT & MACHINE COP

What's next for these projects?

- Construction completion and startup
- Ongoing commissioning
- Data collection and testing
 - Load shifting CTA 2045
 - Recirc return locations
 - Low-speed / low-dB operation at night
- Recommendations to manufacturers
 - Packaging of systems & components
 - System configurations
 - Contractor training
- Reporting

- Deploy flow meters on existing system to avoid oversizing HPWH plant
 - Can be the difference between a project penciling or not
 - Can be difficult to find enough straight pipe for flow meters

Size large equipment carefully!

 Limited options to choose higher capacity units were essential to comply with NYC Building Code and minimize on-site operator involvement

- Address recirculation losses & crossover before electrifying
 - How much are recirc losses and how much can they be reduced?
 - Addressing recirc losses and crossover may be extremely labor intensive
 - We have seen buildings where recirculation is 60%+ of existing DHW load
 - MUST be addressed first to electrify cost-effectively!

• Space planning can be very hard.

- Securing outdoor space for unit installation presented a major challenge, particularly ensuring service clearances and tube-pull space for existing buildings.
- May end up with tons of new equipment crammed into tiny spaces.

Existing structural capacity will constrain installation locations

- The weight of large HPWH units often strain existing building structures.
- Avoiding rooftop installations is usually necessary to prevent overloading or major structural upgrades that would drastically increase project costs.

Cold weather complicates HPWH design.

- Must be careful when selecting equipment to use rated capacity at local design conditions.
- Provide adequate provisions for freeze protection such as glycol, heat trace, or both to prevent freezing of pipes.
- Does a system allow for drain-back of water during a power outage?

• Try to avoid putting air-source HPWH inside.

- Installing Air-to-Water Heat Pumps in indoor mechanical rooms isproblematic:
 - How to handle exhaust/discharge of cold air?
 - How to ensure tempered make-up air to prevent potential pipe freezing due to frigid winter air influx?
- Best to locate air-source HPWH outside

• Code was not written for HPWH.

• Complying with minimum clearance requirements per code (e.g., 8ft from the property line) presented regulatory challenges.

• Large heat pumps are not silent

• Ground installation of large equipment with high dBA rating can pose issues if AHJ has noise ordinance, or cause resident complaints

Plumbers are not HVAC contractors

- Plumbers are used to thermistors & aquastats, not complex BMS-level controls
- Complex HVAC-level controls not a good fit for plumbers to install

There are more ...

- Challenges in Retrofitting with Existing DHW Systems
- Limited Pool of Experienced Plumbing Contractors
- Electrical Service Capacity Limitations
- Electrical End Box Challenges
- Protection from Tenant Waste
- Coordination with Utility Companies
- Weather-Resilient Design
- Booster Installation Challenges
- Lead Time Impact
- In-Unit Access Coordination
- Cost Justification Challenges
- Utility Upgrade Inconvenience
- Change Order Complexity

Wouldn't it be great if?...

- Equipment could be as simple and **plug-and-play** as possible?
 - Package all components; offer skid options
- CHPWH equipment was as well-supported as VRF?

- Manufacturers made **equipment output and COP at various OATs** easily available and offered free, location-specific, transparent sizing for your location through their websites?
- We could find an efficient way to **avoid the swing tank** and simplify designs?
- There were clear standard guidance around setpoints? There are too many, which can go wrong too easily.
- We could use R290 (propane) heat pumps products in the USA like the rest of the world?
- HPWH manufacturers see electrification as a **once-in-a-generation opportunity** to replace nearly every water heater in the country within the next 15 years, and ramped up training, support, and manufacturing to help us do this?

Thank You!

Nick Young nyoung@aeacleanenergy.org

