

June 20th, 2023

DISPLACING CAC WITH ASHPS

Dual-Fuel Energy and Cost Savings

Ranal Tudawe

Research Analyst – Center for Energy and Environment

Agenda

What is a dual-fuel system? Background on energy models Results and key takeaways

- Space heating is the biggest end use in NEEA region homes
 - Single-family homes in NEEA's footprint can attribute nearly half their annual energy usage to space heating
 - Decarbonization of space heating via electrification on a clean grid is among the best climate mitigation opportunities for buildings
 - On top of that, they are an incredible energy efficiency technology, up to 600% better than standard gas furnaces
 - But all-electric ASHP systems can be expensive to buy and also to operate compared to natural gas furnaces

Center for Energy and Environment

- Let's start small?
 - ASHPs also cool better than code minimum central air conditioners (CACs)
 - Can we advance the ASHP market by installing ASHP as cooling measures?

5

Market Characteristics – RECS 2020 Microdata

Existing HVAC	ASHP Options	Market Size		
AC replacement – with ductwork	Ducted ASHP	~2,000,000 homes		
Big Opportunity – 2,000,000 homes				
Electric baseboard	Cold-climate ducted HP	~300,000 homes		
Electric furnace	Ducted ccASHP	~280,000 homes		
Propane furnace	Ducted dual fuel ccASHP	~82,000 homes		
		\sim		

Center for Energy and Environment

6

Overview of a Dual-Fuel System

FURNACE

HEAT PUMP

CONTROLLER

- Furnace is typically natural gas fueled, but can use a delivered fuel
- Operates during colder heating season temperatures;
- Furnace capacity is selected for the entire heating load of the home.

- Heat pump uses electricity for operations
- Operates during warmer heating season temperatures
- HP capacity is selected for the AC cooling load
 key design element

HOM	F FAN SYSTEM System: Co	A MENU	
UU	100001:001	roo%	
s.30	כר	o Schedule	▲
o o pm	JL YS™ Hamidby	C	<i>∎</i>

- Controller selects furnace or HP as heating source
- It is wired to the furnace, the HP, and an outdoor temperature sensor

The controller is located conveniently in the home

Dual Fuel Configuration

- The outdoor temperature sensor reading drives fuel source decision.
- The controller is programmed by installer for an outdoor temperature "switchover"
- The controller opens and closes 24 volt circuits (analog) to achieve control.
- There are TWO essential installation elements here:
 - 1. Correct wiring
 - 2. Proper programming

Two Switchover Temperature Types

- 1. Thermal Balance Point
 - An analysis of <u>the heating load calculation</u> and the <u>heating capacity "curve"</u> of the heat pump
 - Installer selects the outdoor temperature "point" at which the HP can no longer satisfy the heating load of the home.
 - Easier of the two balance points to calculate; doesn't tend to change over time.
- 2. Economic Balance Point
 - An analysis of the heating load of the home, and the cost per BTU of the HP and the furnace. Usually requires software to calculate
 - For manufactured supplied configurations: Installer must know the costs of both fuels (electric and gas); these costs must be fixed. Otherwise, installer brain will explode.
 - More complicated and likely to change over time.

Background on Energy Models

- Centrally ducted air conditioning (CAC) systems with natural gas furnaces are the most common residential HVAC package
- Replacing CAC on failure or displacing CAC in new construction with ASHPs is a very large opportunity
- Preserving the furnace in a dual fuel (hybrid heating) configuration:
 - Eliminates difficult heat load sizing for ASHPs
 - Eliminates peak load issues
 - Enables fuel switching demand response strategies
 - Adds flexibility to ASHP system selection
 - Enables diverse, regionally appropriate decarbonization strategies

Defining the Product Segment

WHAT IT IS

- ✓ Centrally ducted
- ✓ Natural gas backup (dual fuel or hybrid heat)
- \checkmark Sized for cooling
- ✓ Single speed air source heat pump (ssASHP)
- ✓ Variable speed ASHP (vsASHP)
- ✓ Cold climate ASHP (ccASHP)
- ✓ Interoperable or non-interoperable with existing furnace

WHAT IT ISNT

- X Mini-split / Multi-split / Mini-ducted
- X All-electric or propane backup
- X Sized for heating

- This modeling study seeks to understand *energy and customer HVAC bill impacts* from ASHP as CAC replacements across a variety of representative applications in the NEEA region
- **Customer HVAC bill impacts** depend on the relative costs of natural gas and electricity
 - Iterate through parameter space of electricity and natural gas rates to estimate bill impacts and how they are related to ASHP type and operation, namely *switchover temperature*

Model Considerations

- **Climate**: NEEA's footprint covers a large geography with diverse heating and cooling requirements
- Building type: Residential buildings vary substantially in size, age, design, and efficiency
- **ASHP type**: Products for ASHP systems as CAC replacement spans from federal minimum efficiency single speed systems to high performance cold climate variable speed systems
- **Replacement type**: ASHPs as CAC replacements can replace the CAC outdoor unit while keeping the furnace/air handler or they can replace the furnace/air handler as well, adding combustion and fan efficiency compared to the baseline
- **Switchover temperature**: Dual-fuel systems are commonly operated such that ASHP is used in mild weather and a gas furnace in cold weather; the outside temperature at which these systems 'switchover' can vary for many reasons
- Utility rates: Electric and natural gas costs vary by location and time. Given the sensitivity of ASHP economics to energy costs; this study reflects a wide parameter space to see how ASHP bill impacts vary in response to electric and gas rate combinations
- **Baseline HVAC:** While cooling efficiency is fixed, baselines furnace AFUEs vary regionally

Scenarios of Interest

Variable	Details
Climate	• TMY2020 weather for Seattle, WA; Portland, OR; Boise, ID; Missoula, MT
Building type	 SF_SEEM1 1344sf (slab on grade) UA 263 SF_SEEM2 2200sf (crawl) UA 474 SF_SEEM3 2688sf (basement) UA 610
ASHP type	 Single speed ASHP (ssASHP) Variable speed ASHP (vsASHP) Cold climate variable speed ASHP (ccASHP)
Replacement type	 CAC only (keep furnace) CAC + Furnace (full replacement)
Switchover temperature	 Temperature at which ASHP switches to backup furnace Between 0°F and 65°F (regionally appropriate values)
Utility rates	 Electric rates varied from 0.08 to 0.12 \$/kWh Natural gas rates varied from 0.70 to 1.50 \$/therm
Baseline HVAC	 Furnace AFUE 90% - 96% (regionally appropriate value) SEER1 14.2 CAC

• ASHP Archetypes

ASHP Archetype	SEER1	HSPF1
Single speed ASHP (ssASHP)	15	9
Variable speed ASHP (vsASHP)	20	10.5
Cold climate variable speed ASHP(ccASHP)	18	10

Model Results - Energy

Large Regional Differences in Heating Load

- Portland and Seattle have negligible heating load below 30 °F
- Boise has 20% of the heating load below 30 °F, but mostly above 20 °F
- Missoula has 39% of the heating load below 30 °F, but mostly above 10 °F

Location	Climate Zone	HDD	99.6% DB (°F)	CDD	0.04% DB (°F)
Portland, OR	4C	5657	26	481	92
Seattle, WA	4C	5967	27	211	86
Boise, ID	5B	6099	11	1234	99
Missoula, MT	6B	7964	-2	547	93

Backup Usage Assumptions

- The backup natural gas is used below the switchover temperature
- In all these energy results, this is the capacity switchover
- Maximizing heat pump may not be the most economic choice
- Model outputs are specific and very sensitive to assumptions

Backup Natural Gas Heating

- No backup heat needed for ccASHPs
- Negligible backup heat for vsASHP excluding Missoula (<10 therm)
- Negligible backup heat for ssASHP in Portland and smaller Boise homes (<10 therm)

Regional ASHP Requirements (Seattle)

- A 2-Ton ssASHP in Seattle runs out of capacity at 35-40 °F
 - Seattle's small cooling load limits the ssASHP sized for cooling
- The same size vsASHP needs has backup below 30-35F for the coldest 1%
- The ccASHP systems can meet the load

Heating Energy from ASHP - Seattle - 2200 sf					
Temperature	ssASHP	vsASHP	ccASHP		
20	72%	99%	100%		
25	72%	99%	100%		
30	72%	99%	100%		
35	72%	99%	100%		
40	72%	98%	99%		
45	68%	82%	82%		
50	47%	55%	55%		
55	27%	31%	31%		
60	13%	14%	15%		
65	6%	7%	7%		

Regional ASHP Requirements (Portland)

- A 3-Ton ssASHP in Portland runs out of capacity at 30-35 °F
 - Portland requires larger CAC than Seattle
- The same size vsASHP and ccASHP systems can meet the load

Heating Energy from ASHP - Portland - 2200 sf				
Temperature	ssASHP	vsASHP	ccASHP	
20	98%	100%	100%	
25	98%	100%	100%	
30	98%	100%	100%	
35	98%	99%	99%	
40	96%	97%	96%	
45	80%	79%	78%	
50	55%	53%	52%	
55	32%	30%	31%	
60	14%	13%	14%	
65	7%	6%	6%	

Regional ASHP Requirements (Boise)

- A 4-Ton ssASHP in Boise runs out of capacity at 10-15 °F
 - ssASHP benefits on the heating size when sized for Boise's large cooling load
- The same size vsASHP and ccASHP systems can meet the load

Heating Energy from ASHP - Boise - 2200 sf				
Temperature	ssASHP	vsASHP	ccASHP	
10	95%	100%	100%	
15	95%	99%	99%	
20	92%	96%	95%	
25	84%	86%	84%	
30	74%	75%	73%	
35	45%	44%	41%	
40	28%	26%	24%	
45	15%	14%	14%	
50	7%	6%	6%	
55	4%	3%	3%	
60	1%	0%	0%	
65	0%	0%	0%	

Regional ASHP Requirements (Missoula)

- A 3-Ton ssASHP in Missoula runs out of capacity at 15-20 °F
 - Missoula has a large heating load at cold temperatures where the ssASHP can't keep up
- The same size vsASHP can meet load down to 5-10 ° F
- The ccASHP system can meet the load

Heating Energy from ASHP - Missoula - 2200sf				
Temperature	ssASHP	vsASHP	ccASHP	
0	48%	86%	100%	
5	48%	86%	100%	
10	48%	86%	99%	
15	48%	85%	93%	
20	48%	76%	81%	
25	47%	62%	65%	
30	39%	52%	54%	
35	25%	33%	33%	
40	15%	19%	19%	
45	9%	12%	12%	
50	5%	7%	7%	
55	3%	4%	4%	
60	1%	1%	1%	
65	0%	0%	0%	

Model Results - Economics

Customer HVAC Energy Bill Impacts

- All scenarios yield some bill reductions (although many are very close to zero) because the system can be operated in CAC-only mode and all ASHP systems have higher efficiency than the baseline CAC
- Switchover temperature can be adjusted to values above the capacity-based switchover to affect HVAC energy bill impacts
 - ASHP performance decreases with outside temperature
 - Combination of ASHP and switchovers produce different costs due to differences in heating hours at each temperature and the cost of natural gas and electricity
- This model yields about 500 scenarios each representing a climate, ASHP type, building model, replacement type. Each of these scenarios can be optimized to identify the switchover temperature that maximizes costs savings at specific electricity and gas rates.
- Examples of these results follow

How to Interpret Contour Plots

ssASHP on SEEM1_1344sf in Seattle

ssASHP on SEEM2_2200sf in Seattle

ssASHP on SEEM3_2688sf in Seattle

ssASHP on SEEM2_2200sf in Portland

ssASHP on SEEM3_2688sf in Portland

ssASHP on SEEM1_1344sf in Boise

ssASHP on SEEM2_2200sf in Boise

ssASHP on SEEM3_2688sf in Boise

ssASHP on SEEM1_1344sf in Missoula

ssASHP on SEEM2_2200sf in Missoula

ssASHP on SEEM3_2688sf in Missoula

vsASHP on SEEM1_1344sf in Missoula

vsASHP on SEEM2_2200sf in Missoula

vsASHP on SEEM3_2688sf in Missoula

• Overall Trends

- Single speed offers minimal flexibility compared to variable speed options
 - Worse capacity retention
 - Lower efficiency in colder weather
- The amount of cooling required governs how much we can electrify heating
 - Climates with large cooling needs will see more room to electrify with larger ASHPs
- The heating load scales heating bill impacts
 - Scenarios that reduce energy bills will see larger reductions with a larger load in similar weather
- Technical potential may not be the design limitation
- There is a lot of sensitivity to site-specific details

- How much backup heating is necessary to justify dualfuel?
- How do we quantify the benefit of a gas backup for resiliency or extreme weather?
- How do we select the right heat pump depending on the above answers?

Contact Information

Ranal Tudawe – Research Analyst Center for Energy and Environment <u>rtudawe@mncee.org</u>

Josh Quinnell – Senior Research Scientist Center for Energy and Environment jquinnell@mncee.org

Noe Contreras – Senior Project Manager NEEA <u>ncontreras@neea.org</u>

