

DO AS We Say (and As We Do): Energy 350 Office HVAC System Conversion

June 28th, 2022

- WHY Energy 350 upgraded our HVAC?
- WHAT is a very high efficiency DOAS?
- **RESULTS** from our HVAC conversion
 - Energy, comfort, IAQ
 - Design decisions, system optimizations
 - Lessons learned

Why E350 upgraded our HVAC

- 1. Increase thermal comfort
- 2. Improve indoor air quality
- 3. Decrease our carbon footprint
- 4. Improve energy efficiency (lower energy costs)
- 5. Have a cool shiny new system to show off to clients
 - a) Industry events
 - b) NEEA anytime
 - c) Hands on testing

Energy use in U.S. commercial buildings by major end uses, 2012 trillion British thermal units

Source: U.S. Energy Information Administration, 2012 Commercial Buildings Energy Consumption Survey: Energy Usage Summary, Table 5 (March 2016)

Compared to our Utility Bills, Energy 350 spends:

- > 34x on rent
- > 800x on our annual operating expenses

Expenditure	\$/month	\$/year	% of total	x HVAC
HVAC Energy Pre-Conversion	\$699	\$8,384	0.12%	1
HVAC Energy Post-Conversion	\$498	\$5,979	0.08%	0.7
Rent	\$24,000	\$288,000	4%	34
Total Operating Expenses	\$600,000	\$7,200,000	100%	859

What is very high efficiency DOAS?

Very high efficiency dedicated outdoor air system

High performance electric 2 heat pump system (1) High efficiency heat/energy recovery ventilator (HRV/ ERV) with \ge 82% sensible effectiveness 44°F ← - 40°F **3** Fully decoupled ventilation from heating and cooling **Right-sized heating** 4 ---> and cooling system ROOF Fan Coil Unit 66°F 100°F 70°F 70°F

6/28/2022

INTERIOR

ENERG^{\$}350

Energy 350 VHE DOAS Conversion

System conversion

ENERG^{*}350

3. Added (2) HRVs

1. Added VRF with (7) indoor units

2. Removed (2) RTUs

Comfort conditioning system (VRF)

ENERG^{*}350

10

Kitchen

West wall/south windows

Central controls

Upstairs thermostats

Central VRF controls

Ventilation system (HRVs)

ENERG^{*}350

Heat recovery ventilators

Repurposed ductwork for ventilation air

Dedicated control system

	Quantity / Make / Model	Cooling Capacity	Heating Capacity	Zones
Pre-Conversion System				
Packaged Single-Zone Rooftop Units (Gas Heat)	(2) Carrier 48TCED09	17 tons	25 tons (296 MBH)	2
Post-Conversion System				
VRF Heat Pump	(1) LG ARUM121BTE5	10 tons	11 tons (135 MBH)	7
Heat Recovery Ventilators	(2) Ventacity VS1000RTh	1,500 cfm (design) /	2,100 cfm (max)	2

41% reduction in cooling capacity!

Results

ENERGŸ350

West Open Office CO₂, Temperature and Relative Humidity (typical Summer week)

Peak load analysis ("right-sizing")

Heat dome event

Outside Air Temp (°F) 120 Occupied **Occupied Hours** 8am - 5pm Hours 8am - 5pm 🦰 110 100 Temperature (°F) 90 80 77°F 75.5°F Max afternoon Max afternoon 70 OAT: 107.1°F OAT: 111.9°F Indoor: 75.5°F Indoor: 77.0°F 75°F Setpoint 75°F Setpoint 60 6126121 12:00 AM 6126121 6:00 AM 6126121 12:00 PM 6126121 6:00 PM 6121121 12:00 AM 6121121 12:00 PM 6121121 6:00 PM 6128121 12:00 AM

ENERG^Ý350

More recent (typical) warm weather

ENERG[¥]350

Cooling in Portland

2017 ASHRAE Handbook - Foundamentals (IP)

					POR	FLAND IN	TL, OR, U	SA (WMO:	726980)						
Lat:45	5.596N	Long:12	2.609W	Ele	ev:19		StdP: 14.69)	Ti	me zone:-8.	00	Period	:90-14	WBAN	V:24229
Annual He	ating and Hu	unidificatio	n Design Co	onditions											
0 11 4	TT	- DD		Hum	idification D	P/MCDB a	nd HR		Coldest month WS/MCDB				MCWS/	PCWD to	
Month	Coldest Heating DB 99.6%		99%			0.4% 1		%	99.6	% DB					
Wohn	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	
12	25.0	29.0	9.8	9.1	30.7	16.2	12.5	34.1	30.5	37.2	27.3	39.1	10.0	120	
Annual Co	oling, Dehu	midification	, and Enthal	py Design	Conditions										
Hottest	Hottest			Cooling I	DB/MCWB				1	Evaporation	WB/MCD	B		MCWS/	PCWD to
Month	Month	0.4	1%	j	۱%	2	.%	0.4	4%	19	%	2	%	0.49	6 DB
	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
8	21.4	91.2	67.5	87.1	66.4	83.4	65.2	69.5	86.8	68.0	84.2	66.2	80.9	10.3	310
	Dehumidification DP/MCDB and HR Enthalpy/MCDB _									F .					
	0.4%			1%			2%		0.4	1%	1	%	2	%	Max WB
DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	Max WD
63.2	86.8	75.2	61.8	82.4	73.3	60.4	78.4	71.6	33.5	87.6	32.1	84.1	30.8	80.9	77.2
Extreme A	nnual Desig	n Condition	s												
Eute		we		E:	xtreme Annu	al Tempera	ture		n-}	ear Return	Period Valu	es of Extrer	ne Tempera	ture	
EXU	enie Annuai	wo		M	lean	Standard	deviation	n=5	years	n=10	years	n=20 years		n=50	years
1%	2.5%	5%		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
23.7	19.7	17.4	DB	20.8	99.0	5.2	3.3	17.1	101.4	14.0	103.3	11.0	105.1	7.2	107.5
			WB	19.1	72.8	5.2	1.8	15.3	74.1	12.3	75.2	9.3	76.2	5.5	77.6
Monthly C	limatic Desi	gn Conditio	ns												
			Annual	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		DBAvg	54.6	41.5	43.8	47.9	52.3	58.4	63.2	69.5	69.9	65.3	55.3	46.7	40.9
		DBStd	11.57	5.68	5.34	4.75	5.28	6.05	5.46	5.36	4.79	5.22	5.16	5.73	6.24
		HDD50	1005	267	179	98	32	3	0	0	0	0	13	127	286
Tempe Dogree	ratures, Dave and	HDD65	4232	728	594	529	383	221	96	15	9	59	304	548	746
Degree	-Hours	CDD50	2695	4	6	34	101	264	397	605	616	459	176	29	4
Degree		CDD65	447	0	0	0	1	17	43	155	160	69	2	0	0
		CDH74	4349	0	0	1	33	254	477	1485	1373	694	32	0	0
		CDH80	1622	0	0	0	4	75	168	605	530	237	3	0	0

PDX Annual Cooling Degree Days

CDD_65 — TMY CDD

Cooling in Portland

ENERG^{\$350}

S												
	Ex	treme Annu	al Temperat	ure		n-Y	ear Return	Period Valu	es of Extren	ne Tempera	ture	
	M	ean	Standard	deviation	n=5	years	n=10	years	n=20	years	n=50	years
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
DB	20.8	99.0	5.2	3.3	17.1	101.4	14.0	103.3	11.0	105.1	7.2	107.5
WB	19.1	72.8	5.2	1.8	15.3	74.1	12.3	75.2	9.3	76.2	5.5	77.6

Annual Cooling, Dehumidification, and Enthalpy Design Conditions								
TT - 444	Hottest	Cooling DB/MCWB						
Hottest	Month	0	.4%	1%				
wonu	DB Range	DB	MCWB	DB	MCWB			
8	21.4	91.2	67.5	87.1	66.4			

PDX Maximum Annual Dry-Bulb Temperature

- Cooling in NW commercial buildings is becoming more important but...
- Cooling is still only 1,850 kWh/yr
 - 9% of HVAC
 - 3% of building
- VHE DOAS is more resilient in Extreme weather events
 - High efficiency heat recovery nearly eliminates ventilation load
 - Zonal heating and cooling
 - Modern heat pump technology performs well in a range of conditions

EUI (kBtu/ft^2)

ENERG^{\$}350

Energy results

ENERG^Ý350

Carbon emissions

ENERG^{*}350

ENERG[®]350

Source: BetterBricks | Covid-19 Risk Reduction Strategies and HVAC System Energy Impact

Project Costs

Design & Operational Challenges (Lessons Learned)

Air Flushing

ENERG^{\$}350

- ASHRAE ETF recommends 3 Air Changes 95% of contaminants removed
- Based off our office and HRV flow rate, we need 3.5 hours to meet 3 air changes
- Run 2 hours before and after typical office hours
- 300 watts (ea.) 1,040 hrs/yr
- 624 kWh/yr
 \$50/yr
 3% of HVAC

Night Flush ("Freecooling")

ENERG^{*}350

6/28/2022

29

Vampire power draws

you can see that the INV1 crank case heater kicks on to maintain the refrigerant temp in the compressor to stay above 73 degrees. Confirming with factory the SOO for preheating the compressor.

6/28/2022

- 1. Occupant comfort and safety > energy
- 2. Night flush @ 100% airflow was wasting Energy! (a little)
- 3. Running VRF on weekends for café
- 4. It's pretty difficult to screw up a well-designed VHE DOAS

- Thermal comfort?
- □ IAQ?
- **Carbon footprint**?
- **Energy efficiency**?
- □ Showcase system?
- □ Hands on testing?

- ✓ Anecdotally and quantitatively
- ✓ Doubled ventilation rates
- ✓ 20-ton emissions reduction
- ✓ 66% reduction in EUI (29% \$\$\$)
- ✓ 5 events
- ✓ Weekly

Other NEEA Demonstration Projects

Providing "technical support" since 2018

							ld # / Build	ling Type / Loca	tion / Model					
		1	2	4	6	7	8	9	10	11	12	13	14	15
		Office	Office	Office	Office	Office	Dormitory	Office	School	School	Office	Office	Office	Non-Restaura
		Portland, OR	Corvallis, OR	Libby, MT	Seattle, WA	Seattle, WA	Darby, MT	Tacoma, WA	Monument, OR	Portland, OR	Portland, OR	Portland, OR	Portland, OR	Average
	120	Measure Na Cool kB [.] Fans kB	ames tu/ft2 tu/ft2			6.7	<u>Ave</u> <u>Non-Re</u> Pre-Copye	erage estaurant ersion: 65.3						
	100	Heat kB	tu/ft2 Btu/ft2	12.8		33.9	Post-Conv Building Sa HVAC Sav	ersion: 34.2 avings: 48% vings: 69%						
(Btu/ft2-yr	80-			46.2		i5.S	5.2				9.4		8.7	0.5
-	40	5 8.7	19.4	53	27.1	8.1	21.4	25.5 14.9	.5 8.6 10.9 4		44.1	52.7	33.0	31.6 1
	20	32		L.0	~	<u>∞</u> ∞		÷.	14, 17	7.8	ى س	7.0	7.	A .
	0	6.8 6.8 8.4	20.7 20.7	m m	20.1 20.1	35	m m	17.7	15.7 15.7	13.8 8.3	12.5 12.5 8	16.5 16.5	19.9 19.9	20.0 20.0
		Pre-Conversion Post-Conversion	Pre-Conversion Post-Conversion	Pre-Conversion Post-Conversion	Pre-Conversion Post-Conversion	Pre-Conversion Post-Conversion	Pre-Conversion Post-Conversion	Pre-Conversion Post-Conversion	Pre-Conversion Post-Conversion	Pre-Conversion Post-Conversion	Pre-Conversion Post-Conversion	Pre-Conversion Post-Conversion	Pre-Conversion Post-Conversion	Pre-Conversion Post-Conversion
Building S	avings	63%	39%	29%	42%	61%	24%	40%	35%	50%	64%	66%	53%	48%
HVAC Savi	ngs	73%	71%	45%	69%	85%	52%	57%	50%	58%	79%	84%	75%	69%

6/28/2022

69% HVAC savings across 12 non-restaurant demonstration projects

THANK YOU NEEA!

Appendix

Energy STAR Score

ENERG^{*}350

APPENDIX B: HEATING/COOLING EQUIPMENT MINIMUM EFFICIENCY REQUIREMENTS

Where applicable, allowable space heating/cooling equipment shall meet ENERGY STAR minimum efficiency requirements. Where ENERGY STAR does not apply, the minimum efficiency requirements in Table B1, below, apply.

Table B1: Allowable Heating/Cooling Equipment and minimum efficiency requirements						
Heating/Cooling Equipment	Minimum Heating Efficiency	Minimum Cooling Efficiency	Notes			
Mini-split or ductless multi-zone heat pump (<65 kBtu/hr.) ¹⁵	9.5 HSPF, or 7.8 HSPF2	16 SEER, or 15.2 SEER2	HSFP2 and SEER2 are optional until January 1, 2023 ¹⁶ .			
Air-source VRF (≥65 kBtu/hr. and <135 kBtu/hr.) ¹⁷ without heat recovery	3.4 COP (47°F)	17.4 IEER	Applies to both ducted and non- ducted systems.			
Air-source VRF (≥65 kBtu/hr. and <135 kBtu/hr. ¹⁷ with heat recovery	3.4 COP (47°F)	17.2 IEER	Applies to both ducted and non- ducted systems.			
Air-source VRF (≥135 kBtu/hr. and <240 kBtu/hr.) ¹⁷ without heat recovery	3.3 COP (47°F)	16.4 IEER	Applies to both ducted and non- ducted systems.			
Air-source VRF (≥135 kBtu/hr. and <240 kBtu/hr.) ¹⁷ with heat recovery	3.3 COP (47°F)	16.2 IEER	Applies to both ducted and non- ducted systems.			
Air-source VRF (≥240 kBtu/hr.)	3.2 COP (47°F)	16.2 IEER	Applies to both ducted and non- ducted systems.			
Air-to-water heat pump	1.7 COP		@ 5°F dry bulb and LWT of 110°F			
Ground-source heat pump ¹⁸	3.6 COP ¹⁹ at 32°F EWT	17.1 EER ²⁰ at 77°F EWT	Closed loop water-to-air.			
Groundwater-source heat pump ¹⁸	4.1 COP ¹⁹ at 50°F EWT	21.1 EER ²⁰ at 59°F EWT	Open loop water-to-air.			
Heat recovery chiller		9.78 EER 15.8 IPLV				
Electric resistance heat (Low-energy spaces only)	1.0 COP	Not allowed	Allowed only when spaces demonstrate peak heating loads 30% less than allowed by PHIUS.			

VRF cooling efficiency

Avg. Cooling Capacity @ 95F (tons)

New Day Preschool

LOCATION: Portland, OR sq. ft.: 2,900 cost/sq. ft.: \$22.80

EXISTING SYSTEM:

Constant volume 5-ton packaged heat pump RTU

NEW SYSTEM:

(2) 1.5-ton ductless heat pumps(1) 2-ton ducted mini-split heat pump(1) 1000 cfm HRV

reduction in total HVAC energy use

reduction in total building energy use

ENERG[¥]350

High-Efficiency HRV/ERVs

Greenheck	ERVe-20-15L1	ERV	
Greenheck	ERV-20-15L1	ERV	
Greenheck	ERV-45-15L1	ERV	82% at 75% flow (AHRI database)
Greenheck	ERCH-20-15L1	ERV	
Greenheck	ERCH-45-15L1	ERV	
Oxygen8	Ventum H05	HRV	82.8% at 75% flow (AHRI software)
Oxygen8	Ventum H10	HRV	82.9% at 75% flow (AHRI software)
Oxygen8	Ventum H15	HRV	83% at 75% flow (AHRI test data)
Oxygen8	Ventum H20	HRV	
Oxygen8	Ventum H25	HRV	92 11% at 75% flow (AHPI software)
Oxygen8	Ventum H30	HRV	
Swegon	Gold RX 05	HRV	
Swegon	Gold RX 07	HRV	
Swegon	Gold RX 08	HRV	>84% (PHI database)
Swegon	Gold RX 11	HRV	
Swegon	Gold RX 12 MTE	ERV	>83% per (AHRI software)

Swegon	Gold RX 14 MTE	ERV	
Swegon	Gold RX 20 MTE	ERV	
Swegon	Gold RX 25 MTE	ERV	
Swegon	Gold RX 30 MTE	ERV	
Swegon	Gold RX 35 MTE	ERV	>83% per (AHRI
Swegon	Gold RX 40 MTE	ERV	software)
Swegon	Gold RX 50 MTE	ERV	
Swegon	Gold RX 60 MTE	ERV	
Swegon	Gold RX 70 MTE	ERV	
Swegon	Gold RX 80 MTE	ERV	
Tempeff	RGL 5500	HRV	
Tempeff	RGL 6500	HRV	
Tempeff	RG 1000	HRV	82.5% at 75% flow (third-party testing
Tempeff	RG 1500	HRV	provided at 20 and
Tempeff	RG 2000	HRV	16.7 deg F performance
Tempeff	RG 3000	HRV	software
Tempeff	RG 4000	HRV	confirmation at 35 deg F)
Tempeff	RG 5500	HRV	5,
Tempeff	RGL 1500	HRV	

Tempeff	RGL 2000	HRV	
Tempeff	RGL 3000	HRV	82.5% at 75% flow (third-party
Tempeff	RGL 4000	HRV	testing provided at 20 and 16.7 deg F performance software
Tempeff	RGL 5500	HRV	confirmation at 35 deg F)
Tempeff	RGL 6500	HRV	
Ventacity	VS1000 RTh	HRV	
Ventacity	VS1000 RTe	ERV	PHI Certified RTh hHR= 82%
Ventacity	VS3000 RTh	HRV	Rte hHR= 82%* *Includes latent recovery
Ventacity	VS3000 RTe	ERV	
Ventacity	VS1200CMh	HRV	Ventacity test summary shows 83.3% at 75% flow. PHI Test data: 81.1% th eff at 54% flow.
Ventacity	VS900CMh	HRV	PHI Certified Ventacity test summary: 84.3% at 57% airflow PHI data: 81.6% at 55% airflow
Ventacity	VS250CMh	HRV	Ventacity test summary shows 81.7% at 76% flow. PHI data: >78%

<u>BetterBricks</u>