

Heat Pump Rating Representativeness Project - Update

NEEA Product Council August 15, 2023

Presented by

Christopher Dymond Dr. David Yuill Bruce Harley Chris Williams Vivek Jaiswal NEEA University of Nebraska, Lincoln Bruce Harley Energy Consulting DNV DNV

©2022 Copyright NEEA.

- Introduction and Reason for Project
- Phase 1 Field Testing
- Phase 2 Lab Testing
- Preliminary Observations
- Summary and Next Steps
- Questions and Discussion

- Provide you with a progress update on the Rating Representativeness Project
- Provide general context and details about how the research was conducted
- Inform about possible updates to heat pump test procedure

Introduction And Reason for Project

Accurate ratings ...

... let us see key details we otherwise might have missed.

Field Data over past decade revealed: Ratings were inconsistent with how VSHPs operate in the field

Graphs shows a ductless HP over 36 hours – the firmware was updated 6-11AM on first day (grey traces show "previous day" power)

Ducted Minisplit, Minute by Minute View for Today

Utility Programs Derate Equipment Performance

(based on program evaluation studies of thousands of program participants)

Load Based Test Method Was Developed (2017-19)

- Unit operates under its own native (default) controls based on thermostat setpoint
- Outdoor chamber temperature is held constant for each test condition
- Indoor chamber temperature is allowed to modulate based on real time heat/cool from unit
- Software control of indoor conditions are based an emulated virtual building load for a house exposed to outdoor chamber conditions

Load Based Testing Revealed Slightly Lower Performance and Rank Order Changes

Better ways of predicting and confirming installed system performance enable accurate product differentiation and increased utility support

Load Based Testing revealed that Controls have a big impact on performance of variable speed systems

graphs of same make, model, and size, different model-year

+8% Improvement

+66% Improvement

10 | ©2022 Copyright NEEA. These are graphs of 47F heating test point, all other test points showed similar difference with 40-80% improvement in COP

Same make, product line, and size; new model-year

SEER 25

Interval COP = 2.73

+60% improvement in interval COP

Cooling COP improved +80%

Interval COP = 4.36

Representativeness Project Inception

- We knew the load-based test results were different
- They looked reasonably consistent with field data
- We did not know if they were more accurate (or if the test burden effort would be worthwhile to implement)

We needed a study that evaluated the representativeness of heat pump test procedures

Project Objectives

- Establish trusted field measurement data on ducted and ductless HPs to allow detailed comparison between field results and two major lab test procedures
 - CSA SPE07:23
 - AHRI 210/240-2023 (2020)
- Determine representativeness of test procedure results compared with field operation
- Validate the test methods (we were not testing equipment performance)
- Investigate what are the most important test conditions to get right

- Contracts and Partner Manager
- Prime Contractor and Project Manager
- Field Testing Research
- Technical Leadership and Support
- Lab Testing Research
- Partner Recruitment and Scope of Work

NEEP	
DNV	
University of Nebraska	
Bruce Harley Energy	
UL	
NEEA	

Project Details

- Timeline
 - Scoping, Recruitment, RFP
 - Work planning & Dev
 - Field Testing
 - Lab Testing
 - Analysis & Reporting
- Total Project Budget ~\$1.1M
- Advisory Groups
 - Project Partners
 - Technical Workgroup

Monthly Meetings Bi-weekly Meeting

- 6/22 12/22 1/22 — 5/22 6/22 — 3/23 6/23 — 9/23
- 7/23 12/23

- Northeast Energy Efficiency Partnerships
- Northwest Energy Efficiency Alliance
- BC Hydro
- The Air-conditioning, Heating and Refrigeration Institute
- Xcel Energy
- Southern California Edison
- Pacific Gas and Electric
- New York State Energy Research and Development Authority
- ComEd
- Illume Advising
- American Public Power Association
- 4 Equipment Manufacturers

Phase 1 Field Testing

- Jim Butler
- Yuxuan Chen
- Mehrdad Poursadegh
- Dr. David Yuill

- Jennifer McWilliams
- Vivek Jaiswal
- Chris Williams

- Lincoln, NE from Aug 2022 Apr 2023
- 3 homes x 2 heat pumps
 - 1 ducted, 1 ductless
 - 3-4 days/week for each HP
 - Scheduled internal gains

House Characterization and Tuning

- UA tested and adjusted
 - Modest adjustments to get close to SPE07
 - Indicated system capacity (~1.5 tons, but selected for heating)

House Characterization and Tuning

- Thermal capacitance tested and adjusted
 - Dynamic pulse method
 - Added shallow mass (drywall) in several rooms

System Installation and Instrumentation

- Field tested, but like a lab installation
 - Over 100 sensors per house, including \dot{m}

Example Results - Two Heat Pumps, Same (Hot!) Day

"F" (left) uses 8.4 kWh while "D" (right) uses 11.3 kWh (34% more energy)

Phase 2 Lab Testing

UL lab in Plano, TX

Thermostat Environment Emulator

- Ensures the thermostat is exposed to indoor temperature (RAT) as defined by virtual building load calculation in real time
 - Using consistent air velocity and temp control
- Developed by Purdue University to improve repeatability of load-based testing

- Each Unit Tested with SPE07
- Followed by Appendix M1
- 2 units will have additional repeat SPE07 testing
 - Addition to original project scope

Schedule as of Aug 1

[CUN	MON	-	WED	TUU	CDI	CAT	
	20.4		1048	VVED	07.444	PRI 20.4	SAT	
	23-Apr	24-Apr	25-Apr	26-Apr	27-Apr	28-Apr	29-Apr	UNIT 1 (B
	30-Apr	1-May	2-May	3-May	4-May	5-May	6-May	UNIT 2 (A
	7-May	8-May	9-May	10-May	11-May	12-May	13-May	UNIT 3 (E
	14-May	15-May	16-May	17-May	18-May	19-May	20-May	UNIT 4 (F
	21-May	22-May	23-May	24-May	25-May	26-May	27-May	UNIT 5 (C
	28-May	29-May	30-May	31-May	1-Jun	2-Jun	3-Jun	UNIT 6 (D
	4-Jun	5-Jun	6-Jun	7-Jun	8-Jun	9-Jun	10-Jun	HOLIDAY
	11-Jun	12-Jun	13-Jun	14-Jun	15-Jun	16-Jun	17-Jun	
	18-Jun	19-Jun	20-Jun	21-Jun	22-Jun	23-Jun	24-Jun	
	25-Jun	26-Jun	27-Jun	28-Jun	29-Jun	30-Jun	1-Jul	
	2-Jul	3-Jul	4-Jul	5-Jul	6-Jul	7-Jul	8-Jul	
	9-Jul	10-Jul	11-Jul	12-Jul	13-Jul	14-Jul	15-Jul	
	16-Jul	17-Jul	18-Jul	19-Jul	20-Jul	21-Jul	22-Jul	
	23-Jul	24-Jul	25-Jul	26-Jul	27-Jul	28-Jul	29-Jul	
	30-Jul	31-Jul	1-Aug	2-Aug	3-Aug	4-Aug	5-Aug	
	6-Aug	7-Aug	8-Aug	9-Aug	10-Aug	11-Aug	12-Aug	
	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug	18-Aug	19-Aug	
	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug	25-Aug	26-Aug	
Ì	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug	1-Sep	2-Sep	
	3-Sep	4-Sep	5-Sep	6-Sep	7-Sep	8-Sep	9-Sep	2
	10-Sep	11-Sep	12-Sep	13-Sep	14-Sep	15-Sep	16-Sep	
	17-Sep	18-Sep	19-Sep	20-Sep	21-Sep	22-Sep	23-Sep	
1	24-Sep	25-Sep	26-Sep	27-Sep	28-Sep	29-Sep	30-Sep	<
l	1-Oct	2-Oct	3-Oct	4-Oct	5-Oct	6-Oct	7-Oct	
	8-Oct	9-Oct	10-Oct	11-Oct	12-Oct	13-Oct	14-Oct	

SPE07:23 – Heating Test Conditions

	Toutdoor	Max
Test	(drybulb °F)	Humidity
HL	LCT	
НВ	5	0.0008
НС	17	0.0013
HD (dry)	34	0.0031
HD (marine)	34	0.0035
HE	47	0.0042
HF	54	0.0045

LCT = Lowest Cataloged Temperature

Tindoor = 70°F

Graph for illustrative purposes only

Lowest Cataloged Temperature Heating Test (below 0°F)

Examples are of different machines

©2022 Copyright NEEA.

17°F Heating Test

COP = 2.19 Measured Values 1000 750 500 250 40 Min 20 Min 1 . 50 100 150 250 200 0 Time into test (Minutes)

Started 05/24/23 11:07:34 - System PsyRoom7 - Stall PsyRoom7

Total power

Abs Time

1500

1250

Examples are of different machines

| ©2022 Copyright NEEA.

86°F Humid Cooling Test

Started 05/17/23 15:48:26 - System PsyRoom7 - Stall PsyRoom7 Abs Time Total power with the second states 1500 1250 Values Values Measured 750 COP = 3.51 500 250 25 50 75 100 125 150 Time into test (Minutes)

Examples are of different machines

| ©2022 Copyright NEEA.

Preliminary Observations (final analysis not completed)

SPE07 specifies load line (1.15 * rated cooling capacity)

SPE07 load line (orange) is "prototypical": assumes system sizing for home

For each system, we're using the measured load line (red) from the field in lab tests

(Average = 78% H / 93% C)

Capacity Sys D - Heating (SI units)

Hourly COP profile of system C

Heating (L) and Cooling (R) – COP profiles vs. outdoor temperature

Analysis Objective:

Starting with field- and lab-measured efficiencies across outdoor temperature:

Need to normalize conditions in order to compare

First Unit Comparison – Cooling Performance

Note: COP(refr) from refrigerant mass flow sensor appears to be problematic for this unit and is under review

| ©2022 Copyright NEEA.

Normalizing Efficiency Metrics

• Field:

- Seasonal efficiency during test period
- Actual efficiency profile vs. outdoor temperature (bins)

Load-based test:

- Lab-tested efficiency profile vs. outdoor temperature

• Fixed-speed test:

- Lab-tested efficiency profile vs. outdoor temperature

End result: Equivalent seasonal efficiency metrics

- Field-based seasonal efficiencies calculated with:
 - SPE07 climate profiles Heat: cold dry, Cool: mixed

- Load based tests:
 - Cold/dry heating Seasonal COP
 - Mixed/humid cooling Seasonal COP

- AHRI/M1 climate profiles Heat: Region IV, Cool

- Fixed-speed tests:
 - Region IV heating "HSPF2"/3.41
 - Cooling "SEER2"/3.41

Summary & Next Steps

Bar Pump Test Procedure Update

- DOE asked AHRI for help to update the test procedure
- Near Term
 - Update existing Appendix M1
 - Does not impact rating
 - Intended to address representativeness concerns and provide industry alignment on definitions, etc.
 - Potentially in effect in 2025
- Long Term
 - Will require new rating metric
 - AHRI 210/240 will become AHRI 1600
 - Potentially in effect by 2030

List of items being developed by STC

	Topic	Subtopic	
	CVP		
N	CCHP		
E	"Minor"	Low static	
	"Minor"	Cut-in / cut-out	
	"Minor"	A2L fan power	
	"Minor"	"Other"	
	НР	Strip heat dfst	
		Strip heat supp	
		Dem dfst credit	
	Full season	Standby/off	
		Shoulder fan <u>pwr</u>	
L		Bin weights	
0		Load lines	
Ν	CCHP	CCHEI	
G		Size for heating	
	Coil only	Default watts	
		Floor	
	Hybrid		
	IDDB/IDWB		
	Dehumidify		
	"Minor"	"Other"	

Proposed Controls Verification Procedure (CVP)

- Designed to verify if a variable capacity heat pump is operating as a variable capacity system and if the locked test settings used M1 are reflective of how the heat pump operates in the field
 - Appendix J section 4 Variable Speed Operation
 - Appendix J section 5 "Four Corners Test"
 - Verifies low load, and high load operation is consistent with fixed speed test

Final Thoughts

- AHRI and DOE have clearly recognized the need for better representativeness in the test procedure
- Changes in test procedures have such a big impact that data is essential to make the case for any significant changes
- In addition to CVP the future test procedure may include:
 - Cold Climate definition
 - Improved defrost energy methodology
 - Dual Fuel Rating (AFUE_{hybrid})
 - Rating based on national average climate and use 8760 hour full season calculation method

Questions and Discussion

\mathbf{i} Many thanks to all those involved

Davis Lis	Dr. Jim Braun	Xudong Wang
Jennifer McWilliams	Dr Parveen Dillon	Dave Podorson
Vivek Jaiswal	Jonathan Moscatello	Sean Gouw
Chris Williams	Pace Goodman	Randall Higa
Dr. David Yuill	Rusty Tharp	Rafik Sarhadain
Jim Butler	Anuj Mistry	Courtney Moriarta
Brue Harley	Kevin McFadden	Pauravi Shah
Gary Hamer	Andy Moore	Jes Rivas
Air Spiegel	Pengyu Du	Marilla
Stan Ma	Greg Thomas	Chad Kirkwood
Rick Huddle	Laura De Angelo	John Bade
Jeff Luoma	Mark Baines	Marc Shkolnick
Christopher Dymond	Jeremy Tidd	Nelson Stephens

Rivas lla d Kirkwood Bade c Shkolnick son Stephens Jay Stoa

Contacts for more information:

NEEP	David Lis
NEEA	Christopher Dymond
UNL	Dr. David Yuill
DNV	Vivek Jaiswal
DNV	Chris Williams
BHEC	Bruce Harley
UL	Mark Baines

djlis@neep.org cdymond@neea.org dyuill@unl.edu Vivek.Jaiswal@dnv.com Christopher.Williams@dnv.com bruce@bruceharleyenergy.com mark.baines@ul.com

neea