Integrated Design Lab

University of Oregon

Mark Fretz and Siobhan Rockcastle

January 31, 2023

CLASSIFICATION LEVEL: PUBLIC

Achieving non-visual health in the workplace using LLLCs

An adaptive and dynamic view-based approach to evaluating Equivalent Melanopic Lux under daylit and electric lighting scenarios

Siobhan Rockcastle, Alen Mahić

University of Oregon | Institute for Health in the Built Environment | Energy Studies in Buildings Lab | Baker Lighting Lab

UNIVERSITY OF OREGON

Circadian rhythms

- Sleep and wake
- Hormone secretion
- Body temperature
- Cognitive function

→ Non-visual responses

Direct effects

- Melatonin suppression
- Pupil constriction
- Subjective alertness
- Performance

https://www.solemma.com/Alfa.html

Non-visual health

- Eye-level light exposure that entrains our circadian clock
- Linked to alertness & sleep quality

• WELL Building Standard

- Relies on 4-hours of eye-level light exposure for ALL workstations during occupied hours
- Prime exposure is in the morning
- 1-point for 150 EML
- 3-points for 275 EML

WELL Building Standard – Feature 3, Circadian Lighting Design

Sign in

=	WELL v2, Q4 2022					💽 Imperial 📀	中文 Sig	
←	🔅 Light	For All Spaces Except Dwelling Units			For Dwelling Units			
	Overview							
	P L01 Light Exposure	0	For worksta	hting is used to achieve the following thresholds:				
ရှိ	P L02 Visual Lighting Design	0	a. The following light levels are achieved for at least four hours (beginning by noon at the latest) at a height of 18 in above the work-plane for all workstations in regularly occupied spaces:					
S ≤ 1	3 L03 Circadian Lighting Design	0	Tier	Threshold		Threshold for Projects with Enhanced Daylight	Points	
₩ 20	2 Pts L04 Electric Light Glare Control	0		At least 150 EML [136		The project achieves at least 120 EML (109 M-EDI(D65)) and		
≁ ⊇	4 Pts L05 Daylight Design Strategies	0	1	M-EDI(D65)]	OR	L05 Part 1 or L06 Part 1	1	
	2 Pts L06 Daylight Simulation	0	2	At least 275 EML [250 lux M-EDI(D65)] ¹¹	OR	The project achieves at least 180 EML [163 M-EDI(D65)] and L05 Part 1 or L06 Part 1	3	
])	1 Pt L07 Visual Balance	0	b. The lig	ht levels are achieved on the ve	ertical plan	e at eye level to simulate the light entering the eye of the occupa	ant.	
P	3 Pts. L08 Electric Light Quality							
Ø	L09 Occupant Lighting Control	0	Verified by Performance Test					
0			Note: Refer to the	Performance Verification Guideboo	k for inform	nation on sensor/testing requirements, required testing duration and comp	liance	
*			calculations	i.				

https://v2.wellcertified.com/en/wellv2/light/feature/3

Custom Simulation Workflow

Multi-step process that combines:

Radiance Synthetic Imaging System • Radiance daylighting & electric lighting simulations

• LARK circadian dosing calculation

Radiance and LARK:

- Daylight availability and excessiveness
- Electric lighting integrated using IES files
- Shading operation schedules
- Equivalent Melanopic Lux (EML) levels

Allows us to calculate:

- contribution of daylight and electric light on circadian potential for a series of workstations
- energy required to meet the recommended thresholds using electric lighting
- Compare different control and shading scenarios across the year

Custom Simulation Workflow

• Increased color resolution via materials and sky definitions:

O OREGON

Custom Simulation Workflow

Proof-of-concept

Proof-of-concept

Southwest-facing CIE Intermediate sky Operated Shading

Gray timestamps indicate instances where supplemental electric lighting is needed to meet 240 m-lux

Equipment for Validation at NEEA

• NEEA Offices

- 88 workstations
- Seating orientations facing primarily east/west with some north/south
- 8 zones of LLLC lighting
- Manual shading systems on perimeter

Simulation Set-up

- Simulated annual, climate-based EML at eyelevel for all workstations
- Simulated dynamic manual blind use under LM-83 standard
- Simulated 10-steps of dimming for each zone independently
 - EML dosing under daylight conditions is supplemented using LLLC lighting system
 - Annual energy demand is a result of LLLC needed to supplement eye-level dose

https://idcl.wsu.edu/Illc-curriculum/

Percent of time of year (9am-1pm) **EML > 150Lux** with daylight only

Percent of time of year (9am-1pm) EML > 150Lux with daylight only and operated blinds (LM-83, individual window groups)

O

Percent of time of year (9am-1pm) EML > 275Lux with daylight only

 $\underset{OREGON}{^{\rm UNIVERSITY\,OF}}$

 Θ \leftarrow \ominus \leftarrow \rightarrow \mathbf{igodol} \leftarrow \leftarrow $\mathbf{\mathbf{e}}$ $(\leftarrow$ (\uparrow) 1 1 1% 0 \supset $(\leftarrow$ 50 🔴 \ominus \leftarrow \ominus $\left(\leftarrow \right)$ (75 🔵 \leftarrow \leftarrow (\leftarrow) \leftarrow (\rightarrow) 100 🔘 \rightarrow $\ominus \Theta$ $\overline{}$ \leftarrow \bigcirc \ominus $\left(\leftarrow \right)$ \ominus \leftarrow \ominus \ominus (\rightarrow) (\leftarrow) \rightarrow \rightarrow \leftarrow \rightarrow \leftarrow \rightarrow \leftarrow \leftarrow \rightarrow \ominus $\left(\leftarrow \right)$ \ominus N (← (←

Percent of time of year (9am-1pm) EML > 275Lux with daylight only and operated blinds (LM-83, individual window groups)

O

1,817 kWh lighting annually*

*minimum dimming of 20% and maximum dimming of 80%

1,466 kWh lighting annually*

*minimum dimming of 20% and maximum dimming of 80%

2,360 kWh lighting annually*

* minimum dimming of 20% and maximum dimming of 80%

1,968 kWh lighting annually*

* minimum dimming of 20% and maximum dimming of 80%

3,857 kWh lighting annually*

* minimum dimming of 20% and maximum dimming of 80%

3,619 kWh lighting annually*

* minimum dimming of 20% and maximum dimming of 80%

*does not account for continuous dimming at 20% or demand for private office spaces

OREGON

4,133 kWh lighting annually*

*does not account for continuous dimming at 20% or demand for private office spaces

Monthly Energy Use

From LLLC lighting system to meet 150EMLux recommendation as per the WELL Standard

Monthly Energy Use

From LLLC lighting system to meet 275EMLux recommendation as per the WELL Standard

Annual Energy Use

UNIVERSITY OF OREGON

LLLC to meet 150EMLux WELL Standard threshold:

LLLC to meet 275EMLux WELL Standard threshold:

Annual Energy Use

UNIVERSITY OF OREGON

LLLC to meet 150EMLux WELL Standard threshold:

LLLC to meet 275EMLux WELL Standard threshold:

Annual Energy Use

LLLC to meet 150EMLux WELL Standard threshold:

LLLC to meet 275EMLux WELL Standard threshold:

Percent of workstations that meet 150EMLux

Blinds always open without task lighting

Percent of workstations that meet 150EMLux

Blinds always open with task lighting

Day

Percent of workstations that meet 150EMLux

Percent of workstations that meet 150EMLux

Interior window shading operated as per IES-LM-83 manual control algorithm, with task lighting

Day

Percent of workstations that meet 275EMLux

Blinds always open without task lighting

Percent of workstations that meet 275EMLux

Blinds always open with task lighting

0% 50% 100%

Percent of workstations that meet 275EMLux

Interior window shading operated as per IES-LM-83 manual control algorithm, with task lighting 13 12 Hour (8:00-13:00) 7 10 ი ω Dec Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov

Day

Percent of workstations that meet 275EMLux

Moving forward

- Based on the WELL standard recommendations, energy use is driven by an algorithm that looks to supplement EML dosing for ALL workstations. This means that the worst offenders are driving up the lighting energy/dimming levels to satisfy that minority of workstations.
 - CONTROLS MATTER future work is needed to explore more optimal approaches
- Results are exacerbated by the fact that the lighting fixtures are operated in relatively large groups.
 - BETTER ZONAL CONTROL Future work could optimize fixture grouping via further simulation of smaller groups (2-3 lighting fixtures/each) to capture potential energy savings
- Future work needed to challenge the implementation recommendations for WELL to balance health and energy savings more holistically
 - FIELD STUDIES NEEDED TO SHAPE STANDARDS

buildings a big part of the climate problem... and the solution

buildings 35% 1802 MMT CO_{2e}

total CO2e

per year

transportation 37%

industry 28%

Source: U.S. Energy Information Administration (2019 data)

See.

IMAGE CREDIT: ENERGIESPRONG.ORG

energy + seismic retrofits

areas of climate benefitting from increased façade thermal insulation align with areas of Cascadian subduction zone and present a unique opportunity for combining both efforts.

SOURCE: https://earthquake.usgs.gov/scenarios/eventpage/bssc2014cascadia_sub0_m9p34_se/map

THE DAY A LOC. IN THE

Forest to Façade

using mass timber and digital workflows to retrofit inefficient buildings for climate and seismic resilience

MINDA) TimberPress X 337

Images - (top) Forest, Eugene Deshko, unsplash.com (mid left, middle) Freres Lumber digital panel processing (mid right) OSU Emmerson Lab digital fabrication (bottom) Freres Lumber MPP Production hall \mathbf{co}

Multifamily Façade Retrofit Project Team

Mark Fretz (PI)

Research Assistant Professor Institute for Health in the Built Environment Department of Architecture

Kevin Van Den Wymelenberg (Co-PI)

Professor of Architecture Director, ESBL Department of Architecture

Judith Sheine (Co-PI) Professor of Architecture Director of Design, TallWood Department of Architecture

Jason Stenson (Co-PI) Senior Research Assistant I ESBL Department of Architecture Dale Northcutt Senior Research Assistant II ESBL Department of Architecture

Payton Narancic Graduate Student Researcher Department of Architecture

Flynn Casey

Graduate Student Researcher Department of Architecture

Andre Barbosa (Co-PI) Associate Professor Civil and Construction Engineering

Gustavo Fernando Orozco Orozco Graduate Student Researcher Civil and Construction Engineering

Phil Mann Emmerson Lab Technical Manager TallWood

Mark Gerig Emmerson Lab Technician TallWood

This work is generously supported by the 2020 Wood Innovations Program grant number 20-DG-11062765-737 from the USDA U.S. Forest Service

Low-rise multifamily

- 88% of multifamily is 1-3 stories in the PNW
- 1960-1994 before current seismic/energy code
 - 64.7% 2x4 construction
 - 64% R8-R12 wall Insulation

(Source: NEEA Residential Building Stock Assessment)

•

How to Retrofit

Is the building a candidate?

Level of performance?

RETROFIT LEVEL	STANDARD	WALLS	CEILING	FLOOR	WINDOWS	DOORS	AIR INFILTRATION
1 (COMPREHENSIVE)	PHIUS	R-47	R-89	R-51	U-0.16 OR LESS	R-10	0.06 CFM50/FT2 ENVELOPE AREA
	DOE - ZERO ENERGY READY HOME (ZERH)	CZ 4-5: R-20 OR R-13+R-5 CZ 6 R20 +5 or R13+10	CZ 4-6: R-49	CZ 4-6: R-30 SLAB: CZ 4,5 R-10, 2 FT CZ 6 R-10, 4 FT	CZ 4-6: U-0.27 CZ 4C & 5: U-0.30	NR	LESS THAN 3 ACH 50
2 (MODERATE)	ASHRAE 90.2-2018	CZ 4-5: U-0.060 CZ 6: U-0.045	CZ 4-6: U-0.026	(FLOOR) CZ 4-6: U-0.033 (SLAB) CZ 4-5: R-10, 2FT CZ 6: R-10, 4 FT	CZ 4-6: U-0.32	CZ 4-6: U-0.32	CZ 4-6: LESS THAN 3 ACH 50
	NORTHWEST ENERGY EFFICIENCY ALLIANCE (NEEA) ORSC RECOMMENDATIONS	R-21+R-5	R-60	R-38 (FLOOR) R-10 (SLAB)	U-0.24 OR LESS SHGC 0.27	NR	LESS THAN 2 ACH 50
3	OR CODE (2021 ORSC)	R-15 (EXISTING) R-21 (NEW)	(EXISTING) R-21 - R-49 (NEW) R-30 - R-49	(EXISTING) R-25 - R-30 (NEW) R-30 (SLAB EDGE) R-15	U-0.26 OR LESS	U-0.2 WITH <= 2.5 SF GLAZING, U-0.4 WITH >= 2.5 SF GLAZING	LESS THAN 3 ACH 50
(LOW-COST)	CA CODE (2019) TABLE 150.1-B CAL CZ 1,2,14-16	U-0.051	R-38	(FLOOR) R-19 (SLAB) CAL CZ 1,2,14 - NR; CZ 16 R-7	U-0.30 OR LESS SHGC 0.23 MAX MAX AREA 20% MAX WEST 5%	U-0.20	NR
(NO RETROFIT)	TYPICAL EXISTING CONDITIONS	R-8 - R-12	R-30+	UNINSULATED SLAB	SINGLE PANE ALUMINUM TYPICAL	NR	NR

Seismic vs. Infill

TOTAL WALL AREA: 26,952 SF SOLID WALL AREA: 23,433 SF - 87% WINDOW AREA: 2,959 SF - 11% DOOR AREA: 560 SF - 2%

YEAR BUILT: 1971 STORIES: 2 OF UNITS: 28 UNIT TYPE: 2BR / 1BATH UNIT SIZE: 840 SF BEDROOM BEDROOM BATH KITCHEN LIVING

22" - 0"

SEISMIC SHEAR PANEL INFILL WINDOW PANEL

Digital Workflow

SCAN EXISTING BUILDING

Artec 3D

ALC: NON

R

0	El Scar	01050	in ding se	en process?/CSSJ building score projekt sproj - Artin, Studio 15 Broke
File	Edit	View.	Yendow	Feedback & Help

Le

D Scan

A Autopilot

8 Editor

5 Tools

Align

Tx holes

I Texture

A Construct

Measures

90

P

ALL OBJECTS

PRONT

- Norme
- ArtecRemote
- ·:· ArtecRemote
- ·:· ArtecRemote
- ·: ArtecRemote
- ·:· ArtecRemote

PROCESS LIDAR SCANS

.

istory	14:22:04	Downloading BTX file.
	14:23:07	Importing BTX file "E\Scans\OSU building scan project\4\Tem
Settings	14:23:09	Extracting features
	14:23:09	ArtecRemoteScan-and_21_10_18_11_29 contains no features
Feedback	14:23:09	Cleaning up.
	14:23:15	8 objects successfully imported

in project\4\Temp\ArtecRemoteScan and_21_10_18_11_29 btxv6*.

PROPERTIES -

Fabricate Panels Offsite

VI - MARTI

REMOVE EXISTING EAVE

INSTALL 2" MPP TRANSFER JOIST / SPACER

Rig and Fly Panels

MOUNT PREASSEMBLED PANELS

CLOSE PANEL JOINTS

Store Marry

COMPLETE ROOFING

Our case study building...

...revitalized

DOE ZERH

of Oregon

use the monolithic nature of mass plywood panels with outboard insulation to increase envelope performance of residential housing. panelized prefabrication to reduce costs and increase efficiency.

image credit: Flynn Casey, Christiana Hedlund, University of Oregon

(mfretz@uoregon.edu)