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Executive Summary 

In 2018, a group of Northwest utilities and energy efficiency organizations began 

planning a regional research project for smart thermostats1. Smart thermostat 

models were coming on to the market quickly, with new and various features. Yet, 

using the common evaluation method of pre-post billing analysis of participants 

required one to two years to capture energy savings in both seasons. Concurrently, 

the Environment Protection Agency, via their ENERGY STAR® Connected Thermostat 

initiative, had established energy savings criteria based on thermostat performance 

metrics (i.e., thermostat metrics) such as runtime reduction compared to a 

specified baseline condition.  

The Northwest group (i.e., NEEA, Avista Power, the Bonneville Power 

Administration, Chelan County PUD, Clark Public Utilities, Energy Trust of Oregon, 

Idaho Power, Northwest Power & Conservation Council, Puget Sound Energy, 

Seattle City Light, Snohomish County PUD, and Tacoma Power; collectively, the 

Advisory Team) envisioned that there could be an improved process to enable 

Northwest utilities to quickly screen new products for inclusion in Qualified Products 

Lists (QPLs) and estimate energy savings without repeated one-off evaluations. The 

envisioned method was to align with the ENERGY STAR process and data 

requirements, using data from regional studies as available, particularly for baseline 

usage. With a newly developed method, the Northwest would be able to more 

efficiently calculate expected energy savings from these thermostat metrics.  

Therefore, the primary objective of this study was to develop a method to estimate 

energy savings for smart thermostats based on thermostat performance metrics 

(i.e., hourly thermostat-gathered operational data such as hourly runtimes and 

indoor temperatures). To do this, the Apex team (Apex Analytics, LLC; CLEAResult; 

and Energy350) attempted to establish if a statistically significant relationship 

between energy savings from billing data analysis and thermostat metrics exists 

and was stable across thermostat characteristics. Secondary objectives included 

determining regional baseline thermostat behavior and determining energy savings 

from smart thermostats with sufficient reliability while controlling for other changes 

through a comparison group.  

The major steps in the project included:  

1) Enroll Manufacturers and Opt-In Thermostat Users. The project recruited 

manufacturers to collaborate with the study, run the updated software, and 

provide thermostat metrics for thermostat users. To provide thermostat-

 
1 Per Regional Research Strategy, smart thermostats are defined as programmable, 

internet-connected devices that incorporate occupancy sensing; adaptive control to optimize 
performance based on user behavior and weather conditions; and control for electric heat 

pumps, gas forced air furnaces, electric forced air furnaces, and central A/C systems. 
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specific data, several manufacturers needed signed participation agreements 

from thermostat users. To obtain these legal agreements, the study created 

an opt-in process with nine separate, customized websites. The Apex team 

contacted over 50,000 Northwest residential customers, and 1,800 opted in 

to share their data and completed a survey of their concurrent energy-using 

activities (e.g., heating system upgrades, purchase of an electric vehicle). 

Manufacturers also provided data for 2,100 additional customers under 

existing agreements associated with setpoint optimization programs. 

2) Perform Telemetry Analysis and Software Modification. To collect thermostat 

performance metrics relevant for the Northwest, the Apex team analyzed a 

set of anonymous thermostat data to modify the ENERGY STAR Thermostat 

Field Savings software. This step resulted in a modified version of the 

ENERGY STAR software to calculate new metrics for the study, including 

runtime difference using a regional indoor temperature baseline, temperature 

change rates with and without HVAC, excess resistance score, and additional 

resistance heat metrics for heat pumps. 

3) Collect Utility and Manufacturer Data. Based on the enrolled thermostat 

users, the Apex team collected billing data from four regional utilities and 

thermostat metrics from four manufacturers. The resulting merged data set 

included approximately 1,000 thermostats for the final analysis dataset 

covering January 2017–February 2020. These thermostat users included 

participants and non-participants in utility thermostat programs who 

primarily used gas furnaces to heat their homes and mainly lived in 

Northwest Heating Zone 12. Although the Apex team attempted to develop a 

large and representative sample of thermostat users in the Northwest, the 

complexity of data collection limited the sample size and characteristics. 

Thus, this study’s sample is likely not representative of the region.  

4) Conduct Billing Analysis. To estimate energy savings, the Apex team 

conducted a pooled regression analysis of billing data using future thermostat 

users as a comparison group and a site-level normalized annual whole-home 

billing analysis.  

 
2 Climate Zones | Regional Technical Forum (nwcouncil.org). Heating Zone 1 is a mild 
climate of the western portions of Oregon and Washington, with dense population centers 

such as Portland and Seattle. 

https://rtf.nwcouncil.org/work-products/supporting-documents/climate-zones
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5) Correlate Metrics and Savings. Finally, the Apex team conducted a correlation 

analysis using the site-level energy savings and all thermostat performance 

metrics.3  

 

Key Findings 

Using the data collected and analyzed as described above, our study had three key 

findings, as described below.  

Smart Thermostat Installation Resulted in Statistically Significant 

Energy Savings 

The Apex team conducted a pooled analysis of energy savings using future 

participants as a comparison group4 as shown in Table ES-1. The Apex team found 

statistically significant gas savings (43 therms, 5% of total gas use) for sites with 

gas furnaces and statistically significant electric savings (670 kWh, 4.5%) for sites 

with heat pumps and electric backup. The Apex team found a moderate increase in 

electric use (220 kWh, 2.4%) for homes with gas furnaces, potentially representing 

an increase in either furnace fan usage or cooling usage. For all three groups, the 

Apex team estimated and removed the effect of post-installation setpoint 

optimization5 during portions of the post-period. Due to sample characteristics, 

these results should not be interpreted as representative of the region. 

 
3 The correlation analysis does not require that the sample represents the population and 

benefited from inclusion of multiple thermostat models with a breadth of thermostat 
characteristics. The correlation holds even for customers receiving optimization, because 

optimization should impact both thermostat metrics and energy savings. 
4 Installations dated from January 2018 to March 2020, with 2017 serving as pre-period and 

post-treatment analysis window of March 2019 to February 2020. An alternate pooled 

analysis post-period analysis window is presented in Appendix 2. 
5 Post-installation setpoint optimization is when either a manufacturer or a third-party 
provider remotely accesses the thermostat (usually with user consent) and nudges it to a 

more efficient schedule. 
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Table ES-1. Pooled Analysis Results 

Heating System 

Type 
Fuel n 

Post-Installation 

Average 

Savings 

Std Error of 

Avg Savings 

Savings as % of 

Whole-Home Usage 

Gas Furnace or 

Boiler 

Gas 678 43 therms 20 therms 5% 

Electricity 550 -220 kWh 110 kWh -2.4% 

Heat Pump with 

Electric Backup 
Electricity 73 670 kWh 402 kWh 4.5% 

 

Major Home and Life Changes Occurring in a Similar Timeframe to 

Thermostats Impact Energy Savings Substantially 

During the opt-in process, this study surveyed thermostat users and found that 

residents tend to conduct other major energy-changing behaviors after, during, or 

before installing thermostats (e.g., purchase of an electric vehicle, home 

renovations, HVAC system changes or occupancy changes), as shown in Figure ES-

1.  

Figure ES-1. Major Energy Use Changing Actions by Thermostat Users (All Activities 

Combined) 
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Using a site-level analysis, the study calculated the approximate energy savings 

impact of these activities (reported as during or after thermostat installation) 

compared to thermostat users who did not report engaging in these activities. The 

total sample in each of these groups is not sufficiently large to make statistically 

significant conclusions (see Section 4.2 for more information). However, the Apex 

team found that thermostat users with a new HVAC system had approximately 17 

therms more in gas savings and 100 kWh less in electric savings than the main 

analysis, while additional occupants in the home erased or reversed all detectable 

gas and electric savings. Both electric vehicle purchases and major renovations 

increased electricity use substantially (700 to 1,100 kWh), although both groups 

saved additional therms compared to the main dataset (see Figure ES-2). 

Figure ES-2. Energy-Use Changes due to Concurrent or Subsequent Activities (Individual 

Activities) 
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Based on this finding, the Apex team removed thermostat users who reported 

energy-changing behaviors at the same time or after smart thermostat installation6. 

Energy-changing behaviors, if not controlled for, could bias billing analysis of 

consumption. The billing analysis and correlation analysis in this report represent 

those customers who did not report these major changes in the participant survey 

questions. 

Energy Savings Were Insufficiently Correlated with Thermostat Metrics 

to Establish a Method. 

Using the standard ENERGY STAR metrics, the new thermostat metrics, and site-

level savings, the Apex team conducted numerous correlation analyses of various 

thermostat metrics with site-level savings and found very weak or no correlation. 

This lack of strong correlation persisted across thermostat metrics, including new 

metrics with regional baselines, and was not dependent on thermostat models. For 

example, for gas furnaces, the raw correlation between thermostat metrics and 

savings is very weak7 as shown in Figure ES-3 below. The correlation for heat 

pumps was statistically insignificant. 

Figure ES-3. Site-Level Gas Savings (Gas Furnaces and Boilers) versus Runtime Reduction 

with a Comfort Baseline, with a Line of Best Fit  

 

 
6 Due to concerns regarding survey fatigue that could have negatively impacted thermostat 

user willingness to share data with the study, the Apex team worked with the Advisory 
Team to constrain the set of questions to the highest priority questions. Therefore, the 

study was not able to collect or analyze all desired energy activity changes. There may be 

other exogenous changes that could affect savings estimates. 
7 Out-of-sample bias error for savings (95% confidence interval): -38% to +99%. 
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In summary, none of the models attempting to correlate thermostat metrics with 

site-level savings generated more than a weak correlation. Although models for the 

primary heating fuel of gas furnaces (i.e., natural gas) were suggestive of 

underlying relationships that are roughly consistent with estimated savings (Figure 

ES-1), the regression coefficients had wide uncertainty bands. The resulting 

correlations were not strong enough to function as bases for estimating savings for 

a QPL or to distinguish thermostat differences. Therefore, the Apex team could not 

establish a method to use thermostat-derived metrics to estimate these energy 

savings with sufficient reliability for use by Northwest utilities. 

There are two likely causes of weak or non-existent correlation: 

• The variation in site-level normalized annual consumption (ΔNAC) is large 

and often unrelated to smart thermostat installation (i.e., it is related to 

occupant behavior and other end uses). If this inherent variation is larger 

than the impact of the thermostat, the explanatory power of the model is 

necessarily limited. 

• The runtime reduction metrics do not incorporate information about the site-

level pre-period baselines. Therefore, it is likely that using inequivalent 

baseline calculations—a pre-post method for energy use and a post-only 

method for runtime reduction metrics—is a driver of weak correlation. 

The Apex team expects that, while a larger study could reduce uncertainty in the 

correlations, the two factors listed above would limit the ability of program 

administrators and other organizations to use thermostat-sourced metrics to 

reliably predict energy savings for given groups of thermostats.  

 

Future Research Considerations 

The Apex team’s future research considerations are as follows: 

• Controlling for Major Life Changes. It is important to control for major life 

changes to establish accurate energy savings for smart thermostats. As 

shown above, major life changes, if not controlled for, could influence 

energy savings using billing analysis. The Apex team recommends future 

research control for these factors using surveys or other methods to 

detect major energy-use changes. 

• Integrating Baseline Information. For comparing thermostat metrics and 

site-level energy savings, information on the true baseline (prior 
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thermostat type, setpoints, and/or monitored indoor temperatures) is 

likely necessary. Relying on post-installation data alone will require 

samples of thermostats with sufficiently differentiated metric values, 

either by improving these metrics with additional information or by vastly 

increasing the size and therefore differentiation power of the study. 

• Future Design Considerations. If organizations want to correlate 

thermostat metrics and energy savings in the future, entities will need 

legal and technical infrastructure in place with each thermostat 

manufacturer and potentially with customers. Future designs could gain 

customer and manufacturer agreements on the program front-end.  

• Thermostat Metrics Opportunities. There is potential to use some of the 

additional thermostat metrics related to building shell and HVAC 

performance for behavioral messaging or HVAC diagnostics by energy 

efficiency programs. There is also potential to conduct additional research 

with the existing anonymous data set of ΔNAC and thermostat metrics, 

which is included with this report as Appendix 4. 
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  Background and Goals 

 Background  

In 2018, a group of Northwest utilities and energy efficiency organizations began 

planning a regional research project for smart thermostats. This group refined and 

expanded upon the Northwest Regional Technical Forum’s 2016 Connected 

Thermostat Research Strategy8 to develop the smart thermostat Research Strategy9 

(Research Strategy) for this study. Using this Research Strategy as a basis, this 

group competitively solicited a contractor to conduct this work on behalf of the 

Northwest region.  

This project is a collaboration between NEEA, Avista Power, the Bonneville Power 

Administration (BPA), Chelan County PUD, Clark Public Utilities, Energy Trust of 

Oregon, Idaho Power, Northwest Power & Conservation Council, Puget Sound 

Energy, Seattle City Light, Snohomish County PUD, and Tacoma Power (collectively, 

the Advisory Team). NEEA managed this research project on behalf of the funding 

organizations. 

The Research Strategy defines smart thermostats as programmable, internet-

connected devices that incorporate the following features: 

• Occupancy sensing (e.g., proximity, geo-fencing, or other techniques to 

determine occupancy).  

• Adaptive control to optimize performance based on user behavior and/or 

weather conditions.  

• Control of electric heat pumps, gas forced air furnaces, electric forced air 

furnaces, and central A/C systems. 

The regional research group sought to determine a rigorous method to establish 

energy savings for these thermostats. They recognized that smart thermostat 

models were coming on the market quickly with new features. Yet, using the 

common evaluation method of pre-post billing analysis requires nearly two years of 

combined pre- and post-installation data to establish energy savings. Also, basing 

the savings determination on features (e.g., on-board occupancy sensing) was 

difficult because manufacturers deploy proprietary control algorithms to generate 

energy savings. Therefore, the group was interested in finding a new way to 

establish energy savings.  

 
8 https://nwcouncil.app.box.com/s/v73hd6fq07zuspgs20hi5pybl5wrzci7  
9 https://conduitnw.org/pages/file.aspx?rid=4697  

https://nwcouncil.app.box.com/s/v73hd6fq07zuspgs20hi5pybl5wrzci7
https://conduitnw.org/pages/file.aspx?rid=4697
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Concurrently, the Environmental Protection Agency, via their ENERGY STAR® 

initiative, had established energy savings criteria based on thermostat performance 

metrics (i.e., thermostat metrics) such as runtime reduction compared to a 

specified baseline condition, and had plans to incorporate resistance heat utilization 

in the future.10 Therefore, the group envisioned that there could be an improved 

process to enable Northwest utilities to quickly screen new products for inclusion in 

Qualified Products Lists (QPLs) and estimate energy savings without repeated one-

off evaluations. The envisioned method was to align with ENERGY STAR Connected 

Thermostat process and data requirements, using regional data as available, 

particularly for baseline usage. Data from new and existing thermostat models 

would be periodically collected from random samples of field installs to calculate up-

to-date thermostat metrics. With a newly developed method, the Northwest would 

then be able to calculate expected energy savings from these thermostat metrics.  

 

 Study Objectives  

As defined in the Research Strategy, the primary objective of this study was to 

develop a method to estimate energy savings for smart thermostats based on 

thermostat metrics. To do this, the Apex team (Apex Analytics, LLC; CLEAResult; 

and Energy350) attempted sought to establish if a statistically significant 

relationship between savings and thermostat metrics exists and is stable across 

thermostat models.  

Additional objectives include: 

• Determine regional baseline thermostat behavior through the proxy 

measurement of indoor temperature profiles in the Northwest. (See 

Section 4.1 for results.) 

• Determine energy savings from specific smart thermostat products and 

applications with sufficient reliability, controlling for confounding variables 

and exogenous effects through a comparison group and additional site-

level data. (See Section 4.2 for results.) 

• Establish thermostat metrics based on smart thermostat-reported data 

that correlate to energy savings and provide a rationale for how savings 

 
10 Smart Thermostats Key Product Criteria | Products | ENERGY STAR includes Connected 
Thermostat Energy Savings Criteria based on thermostat metrics such as runtime reduction 

and resistance heat utilization. 
https://www.energystar.gov/products/heating_cooling/smart_thermostats/key_product_crit

eria 

https://www.energystar.gov/products/heating_cooling/smart_thermostats/key_product_criteria
https://www.energystar.gov/products/heating_cooling/smart_thermostats/key_product_criteria
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are achieved, both through setpoint changes that reduce system runtime 

and the reduction of reliance on backup heat in heat pumps. (See Section 

4.3 for results.)  

• Create a variable speed heat pump smart thermostat inventory. (See 

NEEA website for results.11) 

 

 Other Relevant Thermostat Studies 

The Apex team performed a brief literature review of public studies to assess 

current state of savings estimates for smart thermostat installation. Several recent 

smart thermostat studies have estimated smart thermostat energy savings and are 

used to compare to this study’s pooled results in Section 4.2. Most of the studies 

have found that installing smart thermostats results in both gas and electric energy 

savings. 

• Energy Trust of Oregon and Recurve conducted a thermostat study in the 

Northwest between 2015 and 2017 using Nest and ecobee thermostats on 

single-family homes using forced-air heating systems in Oregon12. They 

found that the overall average gas savings in gas-heated homes was 3% 

to 4% of whole-home gas usage. The study also analyzed electric savings 

from gas heated homes and found that they saved 2% to 3% of baseline 

electricity usage. 

• California Public Utilities Commission (CPUC) conducted an impact 

evaluation of direct install smart thermostats in the residential sector for 

program year 201913. Direct install participants typically have multiple 

measures installed at once, so the study employed a method to 

disaggregate whole-home savings into measure-level savings. CPUC 

found a -1% whole-home gas savings rate and a 2% whole-home electric 

savings for single-family homes. Note that this study sample is weighted 

towards Southern California, which has a low demand for winter heating. 

 
11 https://neea.org/resources/variable-speed-heat-pump-smart-thermostat-findings 
12 Recurve; Summary of Recurve Residential Smart Thermostat Impact Analysis. 

https://www.energytrust.org/wp-content/uploads/2020/02/Recurve-Smart-Thermostat-

Impact-Analysis-Reports-2015-2017.pdf 
13 California Public Utilities Commission; Impact Evaluation of Smart Thermostats. 
https://pda.energydataweb.com/api/downloads/2508/CPUC%20Group%20A%20Residential

%20PY2019_SCT%20Final%20Report_toPDA.pdf 

https://neea.org/resources/variable-speed-heat-pump-smart-thermostat-findings
https://www.energytrust.org/wp-content/uploads/2020/02/Recurve-Smart-Thermostat-Impact-Analysis-Reports-2015-2017.pdf
https://www.energytrust.org/wp-content/uploads/2020/02/Recurve-Smart-Thermostat-Impact-Analysis-Reports-2015-2017.pdf
https://pda.energydataweb.com/api/downloads/2508/CPUC%20Group%20A%20Residential%20PY2019_SCT%20Final%20Report_toPDA.pdf
https://pda.energydataweb.com/api/downloads/2508/CPUC%20Group%20A%20Residential%20PY2019_SCT%20Final%20Report_toPDA.pdf


 

 

APEX ANALYTICS Page | 12 
 

• ComEd and Ameren Illinois ran an advanced thermostat study to find the 

impact of residential advanced thermostats on cooling season electric 

consumption. In the study, they used econometric analysis and an 

adjusted ENERGY STAR analysis to estimate savings14. The econometric 

analysis found a 3% to 6% whole-home electric energy savings and a 

10% to 16% peak demand reduction savings depending on the method of 

the regression. The ENERGY STAR analysis found 3% to 29% cooling 

runtime savings, and the study noted the inconsistency with billing 

analysis.  

• BPA and Franklin Public Utility District ran a Nest Learning thermostat 

pilot program on single family home with heat pumps in the Northwest15. 

They utilized a pooled fixed effects model, a normalized annual 

consumption (NAC) model, and an ECAM+ model. All models found a 4% 

savings of total kWh consumption, and the NAC model found a 12% 

savings of estimated heating and cooling load. 

 

 Study Methodology  

This section describes the study data collection and the methodology for each 

analysis involved. 

 Data Collection 

2.1.1 Manufacturer and Utility Recruiting  

To accomplish the primary objective, NEEA and the Advisory Team wanted to 

ensure that the study had a sufficiently large, diverse sample of thermostat users in 

the Northwest with matched billing data and thermostat metrics. This requirement 

meant that the study needed to recruit, collect, and join data from multiple 

sources. Key steps in this process included:  

• Manufacturer Recruiting. The study’s goal was to recruit and include four 

manufacturers in the study. The recruiting process required approximately 

18 months of communications with manufacturers regarding study 

 
14 Guidehouse; ComEd Advanced Thermostat Evaluation. 

https://ilsag.s3.amazonaws.com/ComEd-Adv-Thermostat-Research-Report-Final-2020-11-

10.pdf 
15 Bonneville Power Administration & Franklin Public Utility District. 
https://www.bpa.gov/EE/Utility/research-archive/Documents/BPA%20-FPUD-Nest-

Thermostat-Pilot-Savings-Assessment.pdf  

https://ilsag.s3.amazonaws.com/ComEd-Adv-Thermostat-Research-Report-Final-2020-11-10.pdf
https://ilsag.s3.amazonaws.com/ComEd-Adv-Thermostat-Research-Report-Final-2020-11-10.pdf
https://www.bpa.gov/EE/Utility/research-archive/Documents/BPA%20-FPUD-Nest-Thermostat-Pilot-Savings-Assessment.pdf
https://www.bpa.gov/EE/Utility/research-archive/Documents/BPA%20-FPUD-Nest-Thermostat-Pilot-Savings-Assessment.pdf
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methodology, data requests, legal agreements, and other specifics to 

support manufacturer participation. Ultimately, the study recruited and 

collected data from four manufacturers who contributed greatly to this 

study including NEST/Google, ecobee, Emerson, and Resideo. Several of 

these manufacturers were unable to release thermostat metrics on 

individual customers without customer consent, which required that the 

Apex team establish opt-in processes for each manufacturer’s customer 

base (see Section 2.1.2).  

• Utility Recruiting. The study’s goal was to include three to four utilities 

with regional weather variations that could match thermostat users to 

billing data and provide this information to the study. Four of the funding 

utilities committed to providing data for the study: Avista Utilities, Clark 

Public Utilities, Puget Sound Energy, and Energy Trust of Oregon 

(representing Pacific Power and Portland General Electric). Similar to 

manufacturers, several of these utilities needed customer consent to 

release billing data (see Section 2.1.2). 

2.1.2 Thermostat User Opt-In Process 

To address the needs of utilities and manufacturers to have signed customer 

consent before sharing individual customers’ billing and thermostat metrics, the 

study designed an opt-in process for thermostat users. This opt-in process 

included: 

• Manufacturer-Specific Requirements. Several manufacturers had specific 

requirements for the participation agreement language and/or approach 

(e.g. users needed to validate through an OAuth digital authentication 

process). Additionally, some manufacturers were able to send recruiting 

emails to thermostat users, while others needed utilities to conduct 

recruiting. Finally, two manufacturers provided data for customers who 

had existing signed agreements through optimization pilots. 

• Utility-Specific Requirements. Utilities also had specific needs in terms of 

participation agreement approach and agreement terms to gain customer 

consent. For those thermostat manufacturers that needed utilities to 

recruit customers, each utility had a different approach to recruitment 

(e.g., emails, mail). 

• Nine Websites. The various requirements by manufacturer and utility 

combination led to the development of nine different websites for the opt-

in of thermostat users.  
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• Survey of Thermostat Users. To understand if there were major energy-

use changes in the household at a similar time or after thermostat 

installation, the opt-in process included the following short survey of 

thermostat users. Note that the questions presented were a compromise 

between suspected relevant data and a minimal impediment to opt-in, so 

not all possible complicating actions are represented. Users were asked if 

between January 2017 and February 2020 (before the COVID-19 

outbreak) they conducted any of the following and the timing (i.e., after, 

during, or before thermostat installation).  

o Did you install new heating and/or cooling equipment (e.g., 
furnace, central AC, window AC; water heater is not applicable)? 

o Did you purchase an electric vehicle? 

o Did you complete a major renovation that may affect your energy 
use (e.g., new windows, insulation, remodeling, additions)? 

o Was there an increase in the number of people living in your home? 

o Nest users only: Did you install any other smart home devices 
(e.g., smart speakers, smart lights, home displays, or home mesh 
wifi systems)? [Additional option of selecting “multiple times” for 
installation time] 

• Additional Opt-In Data. Depending on the thermostat manufacturer and 

utility, participants were required to input additional data at opt-in in 

order to enable matching of billing data, such as serial number, address, 

or email.  

To encourage opt-ins, the study offered a donation to a charity of the thermostat 

users’ choice, including Red Cross of America, Alliance to Save Energy, and Feeding 

America. The opt-in process and websites were deployed between September and 

December 2020. 

2.1.3 Utility and Manufacturer Data Collection 

After thermostat users opted into the study, utilities found those participants in 

their system and provided unique identifiers (e.g., study ID or email) and monthly 

billing data (date, consumption, therms/kWh) for the period January 2017 to 

February 202016. 

The study requested additional information from utilities such as heating system 

type, housing information, and program participation information, but these data 

were not provided for the majority of thermostat users. 

 
16 This date was selected to avoid the impacts of the COVID-19 pandemic. 



 

 

APEX ANALYTICS Page | 15 
 

Manufacturers provided anonymous data sets early in the study period to support 

the thermostat telemetry analysis and modification of the ENERGY STAR software 

(see Section 3.2 below). For the correlation analysis, manufacturers provided 

performance metrics based on telemetry data for the study participants, as well as 

other pieces of information such as heating system type, thermostat installation 

date or date range, presence of on-board occupancy sensing, and the timing of any 

setpoint optimization after installation. 

2.1.4 Other Data Sets 

The Apex team also acquired and processed other data sets for inclusion in this 

report.  

• Regional Weather Data. Used in calculations of thermal demand (indoor-

outdoor temperature difference): 

https://eeweather.readthedocs.io/en/latest/ 

• Indoor Temperature Monitoring Study (Cadmus + RTF). Used to develop 

regional hourly temperature baselines by climate zone and heating 

system type: https://conduitnw.org/Pages/RETACProject.aspx?rid=14 

• Residential Building Stock Assessment (RBSA) Metering Study (NEEA). 

Used to develop a regional baseline for demand-normalized resistance 

utilization (DNRU): https://neea.org/data/nw-end-use-load-research-

project 

 Thermostat Telemetry Analysis 

Modification of ENERGY STAR Software and Anonymous Data Analysis  

To support the primary objective of developing a method to estimate energy 

savings based on thermostat metrics, the Research Strategy identified that this 

study should analyze on the existing ENERGY STAR software metrics and new, 

regional-specific metrics.  

Thermostat manufacturers collect hourly time series of indoor and outdoor 

temperatures and runtimes for the different heating and cooling stages (i.e., 

telemetry data). These raw data are exported into a formatted file to be the 

primary input for the ENERGY STAR software. Both the original ENERGY STAR 

software and the ENERGY STAR software modified for this study generate a set of 

summary metrics from the raw data. These are the thermostat metrics referenced 

throughout this report. The thermostat metrics are summary results per 

thermostat, with separate metrics for the cooling and heating season. 
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The Apex team received hourly anonymous telemetry data from three 

manufacturers to understand the hourly data available and their relationship with 

existing ENERGY STAR metrics. This data enabled the team to test and create new 

metrics to assess whether they reflected observable patterns in the data. It also 

allowed the Apex team to ensure that the input telemetry data from the 

manufacturers worked correctly with the software. 

A preliminary set of metrics was recommended in the smart thermostat Research 

Strategy developed by the smart thermostat Advisory Team. These were fully 

described, with small modifications, in the Telemetry Analysis Memo Addendum 

(Appendix 1: Telemetry Analysis Memo Addendum). The Apex team developed 

several additional metrics after investigating anonymous thermostat data from, and 

receiving input from the Advisory Team. These new metrics are described in the 

Data Analysis Implementation Attachment (Appendix 1: Telemetry Analysis Memo 

Addendum). All new metrics were integrated into a separate version of the ENERGY 

STAR Connected Thermostat codebase, which was published17 by the Apex team for 

use by the thermostat manufacturers.  

The list of thermostat metrics used in the analysis includes: 

• Metrics in original ENERGY STAR software 

o Runtime difference from comfort baseline: How different is actual 
HVAC runtime from a baseline that assumes the indoor 

temperature is always maintained at a customer-specific empirically 
derived comfort temperature? 

o Model fit metrics that diagnose the ENERGY STAR thermal demand 

model, including thermal demand model coefficients, model fit, and 
the number of core heating and cooling days. 

o Resistance Heat utilization in different temperature bins: For heat 
pumps, how much does the electric resistance heating kick in the 
colder it gets? 

• Metrics developed for this study (See Appendix 1: Telemetry Analysis 

Memo Addendum) 

o Runtime difference from the Northwest hourly indoor temperature 

baseline: How different is actual HVAC runtime from the runtime 

needed to maintain a regional average baseline of hourly indoor 
temperature? 

o HVAC and no-HVAC temperature change rates: How quickly does 
the home lose heat in winter or gain heat in summer? 

 
17 https://pypi.org/project/thermostat-nw/ 

https://pypi.org/project/thermostat-nw/
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o Integral of sigmoid resistance function: How much resistance heat 
is used by a heat pump in the 0–60°F temperature range? 

o Excess resistance score: How much of the home’s thermal load is 

met by resistance heat when the heat pump compressor could have 
met it? 

o DNRU reduction: For heat pumps, how different is the demand-

normalized resistance heat utilization compared to a regional 
baseline? 

o Linear model between thermal demand and HVAC runtime (model 

fit metrics were used as data quality filters): Is indoor temperature 
driven by the HVAC system? Or are there other drivers? 

Resulting Thermostat Metrics Analysis  

Three manufacturers successfully used the modified software to generate 

thermostat metrics for customers in the opt-in dataset, and the Apex team 

reviewed the resulting dataset. The Apex team generated the metrics for the fourth 

manufacturer. The Apex team also requested and received supplemental data that 

identified sensor-based or geofencing-based occupancy sensing (ecobee and 

Resideo), thermostat installation date (all manufacturers), and participation dates 

in optimization programs (ecobee and Resideo). These supplemental data points 

are not typically provided in the ENERGY STAR process.  

The metrics and additional data received from the manufacturers were then merged 

with energy consumption provided by the utilities. Depending on the opt-in method, 

the joining was performed by participant ID or email address. When the merging 

process was completed, the Apex team had a master dataset of thermostat metrics 

and energy consumption, which could then be used for subsequent stages of the 

analysis. 

 

 Billing Analysis Approach 

Billing data provided by the utilities was analyzed in two ways for this study: within 

a pooled analysis and at the site level. The primary study objective requires a 

correlation between site-level change in NAC (ΔNAC, or site-level savings) and 

metrics produced from thermostat data. Secondary study objectives included 

establishing energy savings from smart thermostat products, which was best 

performed with pooled regression analysis that incorporates future thermostat 

installers as a comparison group in the post-period.  

The available data spanned three years, with installations occurring across the 

second two years, but only two years were needed for analysis. For both analyses, 
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the Apex team used the latest post-period window possible to maximize the data 

available for correlation. Therefore, the 12-month timespan used for the post-

period is the “post-period window” (March 2019–February 2020). The analysis 

window for both pooled and site-level models is shown in Figure 1. 

 Figure 1. Counts of Customers with and without Thermostats Installed, with the Window 

Excluded from Analysis Greyed Out 

 

 

Pooled Analysis 

Pooled analysis produces aggregate energy-use change estimates and baseline 

offsets (see the following section) to account for other exogenous energy-use 

changes during the same time frame using a comparison group of future 

thermostat installers. The Apex team aligned the formatting of the four utilities’ 

data, cleaned, and calendarized (i.e., aligned with calendar months) if necessary 

(see Section 3 for sample data attrition details). The data were calendarized by 

calculating average daily consumption for each billing period, assigning it to all 

represented days, and then grouping and summing these values by month. 

Calendarization was required to use a lagged dependent variable (LDV) model. 

The resulting billing data set after cleaning was used in pooled and site-level 

analysis. The Apex team used an LDV model, where pre-period consumption in the 

corresponding calendar month is included as an independent variable to calculate 

energy-use changes. Unlike a fixed effects model, the LDV estimates post-period 

baseline use as a proportion of pre-period use, the mitigating bias introduced by 

autocorrelation within the time series data. The team then joined the energy-use 

data from the pre-period window (Jan–Dec 2017) to the post-period data (Mar 

2019–Feb 2020) by month-of-year. Then, the following model specification was 

used: 

𝐴𝐷𝐶𝑝,𝑡 = 𝛽0 + 𝛽𝑝𝑟𝑒 ∙ 𝑝𝑟𝑒𝐴𝐷𝐶𝑝,𝑡 + 𝛽𝑚𝑜 ∙ 𝑚𝑜𝑛𝑡ℎ𝑡 + 𝛽𝑝𝑟𝑒𝑚𝑜 ∙ 𝑝𝑟𝑒𝐴𝐷𝐶𝑝,𝑡 ∙ 𝑚𝑜𝑛𝑡ℎ𝑡 + 𝛽𝑝𝑜𝑠𝑡 ∙ 𝑝𝑜𝑠𝑡𝑝,𝑡

+ 𝛽𝑜𝑝𝑡 ∙ 𝑜𝑝𝑡𝑝,𝑡 + 𝜀 
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Where: 

p = An index corresponding to a single unique site 

t = An index corresponding to a calendar month in the post-period 

𝐴𝐷𝐶𝑝,𝑡 = The post-period average daily consumption (ADC) for site p in 

calendar month t 

𝑝𝑟𝑒𝐴𝐷𝐶𝑝,𝑡 = The pre-period average daily consumption for site p in calendar 

month t 

𝑚𝑜𝑛𝑡ℎ𝑡 = A dummy variable for calendar month t 

𝑝𝑜𝑠𝑡𝑝,𝑡 = A binary variable indicating whether site p has the smart thermostat 

installed in calendar month t of the post-period 

𝑜𝑝𝑡𝑝,𝑡 = A binary variable indicating whether the smart thermostat at site p is 

receiving optimization in calendar month t of the post-period 

𝛽0 = The aggregate intercept coefficient estimate 

𝛽𝑝𝑟𝑒 = Coefficient estimating the aggregate impact of pre-period average 

daily consumption on post-period average daily consumption 

𝛽𝑚𝑜 = The monthly intercept coefficient estimate 

𝛽𝑝𝑟𝑒𝑚𝑜 = Coefficient estimating the impact, by calendar month, of pre-period 

average daily consumption on post-period average daily consumption 

𝛽𝑝𝑜𝑠𝑡 = Coefficient estimating the impact of smart thermostat installation on 

average daily consumption in the post-period 

𝛽𝑜𝑝𝑡 = Coefficient estimating the impact of smart thermostat optimization on 

average daily consumption in the post-optimization period 

𝜀 = The error term 

The Apex team ran one model per system type and fuel source for a total of eight 

models and tested the inclusion of occupancy sensing and climate zone as terms in 

separate models. Each model included the additional term as a standalone and 

interacted with the post variable to isolate differences among the groups before 

installation and differences in energy change after installation. 

Although the preferred model for billing savings analysis was as specified above, 

the Apex team also wanted to develop comparison group adjustments, or “baseline 

offsets,” to apply to the site-level models (see next section) to account for 

exogenous changes by non-participants. Therefore, the Apex team used a simpler 

weather-normalized fixed effects model for adjusting to the site-level model, 
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excluding post-installation data for residents who had thermostats installed for the 

entire post-period. The Apex team added a window2 term to represent the post-

period window and isolate the exogenous energy use changes for the comparison 

thermostat users. 

The model formula is shown below: 

𝐴𝐷𝐶𝑝,𝑡 = 𝛼0,𝑝 + 𝛽𝐻𝐷𝐷𝐻𝐷𝐷𝑝,𝑡 + 𝛽𝐶𝐷𝐷𝐶𝐷𝐷𝑝,𝑡 + 𝛽𝑤2𝑤𝑖𝑛𝑑𝑜𝑤2𝑡 + 𝛽𝑝𝑜𝑠𝑡𝑝𝑜𝑠𝑡𝑝,𝑡 + 𝜀 

Where the new terms are: 

𝛼0,𝑝 = Site-specific fixed effect for site p 

𝐻𝐷𝐷𝑝,𝑡 = The heating degree days (HDD) experienced by site p in month t 

𝐶𝐷𝐷𝑝,𝑡 = The cooling degree days (CDD) experienced by site p in month t 

𝑤𝑖𝑛𝑑𝑜𝑤2𝑡 = A binary variable indicating whether month t is in the post-period 

window of analysis 

𝛽𝐻𝐷𝐷 = Coefficient estimating the impact per HDD on ADC 

𝛽𝐶𝐷𝐷 = Coefficient estimating the impact per CDD on ADC 

𝛽𝑤2 = Coefficient estimating the difference in site-specific energy use, on 

average, during the second (post-period) window of analysis 

 

Site-Level Analysis 

The site-level billing analysis followed CalTRACK guidelines18. The Apex team 

conducted the following steps to analyze each participant in the master dataset. 

The Apex team began with a data set with the same cleaned and calendarized 

billing data used in billing analysis (See Section 3.3). Then, the zip code for each 

participant was matched to the closest NOAA weather station to download hourly 

weather data for the analysis period (2017–2020) and typical meteorological year 

(TMY3) data. In most cases, the activation date for the smart thermostats was 

obtained from the manufacturers or inferred from the telemetry data when 

unavailable. 

For consistency with the analysis period in the thermostat telemetry data, the 

baseline and reporting periods for the site-level billing analysis were set as follows: 

• The start of the baseline period was set as January 1, 2017.  

 
18 http://docs.caltrack.org/en/latest/ 

http://docs.caltrack.org/en/latest/
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• The end of the baseline period was set as the earlier of December 31, 2017, 

or the thermostat activation date. 

• The start of the reporting (post-install) period was set as the later of the 

thermostat activation date or March 1, 2019. 

• The end of the reporting period was set at 12 months after the start of the 

reporting period. 

The CalTRACK methods, as implemented in the open-source library eemeter19, were 

then applied to fit variable base degree day models to the billing data. Two models 

were fit—one in the baseline period and a second in the reporting period. The 

outputs of this process included the model parameters and model fit metrics, 

particularly R-squared (R2) and CVRMSE20. 

The two models were used to estimate the NAC during the reporting period in the 

absence and presence of the smart thermostat by multiplying the model coefficients 

with the total degree days in those periods. The difference between the baseline 

and reporting NAC was the ΔNAC, or site-level savings, an estimate of savings 

during the reporting period due to the installation of the smart thermostat. Refer to 

the CalTRACK documentation21 for a full description of this procedure. The Apex 

team applied the adjustment offsets from the pooled analysis (see Section 4.2) to 

all site-level savings shown in this report.  

 

 Correlation Analysis Approach  

The final step in the analysis was the correlation analysis, which attempted to 

correlate site-level ΔNAC with thermostat metrics and other data. The primary 

study goal was to develop a method to estimate energy savings for smart 

thermostats based on thermostat metrics. The correlation analysis tested whether 

any metrics calculated using thermostat telemetry data correlate with energy 

savings. 

To answer these questions, the Apex team tested six to eight different models for 

ΔNAC for each heating system type, each with at least one primary variable and 

between zero and five secondary variables. The primary variables included standard 

ENERGY STAR metrics and the new metrics to capture the major mechanisms for 

 
19 https://eemeter.readthedocs.io/ 
20 Coefficient of Variation of the Root Mean Squared Error. What is a CVRMSE value? | 

Support Article (recurve.com) 
21 http://docs.caltrack.org/en/latest/ 

https://eemeter.readthedocs.io/
https://www.recurve.com/support-articles/what-is-a-cvrmse-value
https://www.recurve.com/support-articles/what-is-a-cvrmse-value
http://docs.caltrack.org/en/latest/
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potential energy savings (e.g., runtime reduction from regional baseline, avoided 

excess resistance utilization), in both the heating and cooling seasons. The 

secondary variables included several different metrics to characterize resistance 

heat utilization, and home and HVAC system characterization metrics. 

For each model, the Apex team conducted the same process to extract model 

coefficients estimate prediction uncertainty. The prediction uncertainty (bias and 

variance) addresses the central goal of the study by evaluating how far off a future 

prediction for savings could be based on thermostat metrics. The steps were as 

follows: 

• Perform a linear regression between adjusted ΔNAC and a set of primary 

and secondary variables. 

• Capture all model coefficients and standard errors, and model fit metric 

such as R2 and CVRMSE. 

• Perform ten-fold cross-validation to determine normalized mean bias error 

(NMBE, the average percent difference between actual and predicted 

ΔNAC for out-of-sample sites). For cross-validation, the Apex team fit a 

model on a 70% random sample of sites to calculate the model 

coefficients and predicted savings for the other 30% of out-of-sample 

sites, then repeated ten times. The mean and standard deviation of the 

NMBE tell us the expected bias in our predictions. 

The Apex team expanded the analysis to include residual analysis and correlation 

residuals with other independent variables for selected models.  

 

 Sample Characteristics and Survey Results 

This section outlines the sample characteristics and survey results from thermostat 

user opt-ins. 

 Thermostat User Opt-Ins 

The Apex team, in partnership with manufacturers and utilities, contacted over 

50,000 Northwest residential customers to participate in the study, as shown in 

Table 1. This led to over 3,900 thermostat users in the study via an opt-in process 

or through manufacturers providing data directly under prior customer agreements.  



 

 

APEX ANALYTICS Page | 23 
 

Table 1. Thermostat Users in the Study 

 Total Ecobee Emerson Nest Resideo 

Contacted/Emailed 50,072 NA* 6,099 28,895 15,078 

Thermostat Users 

in Study 
3,943 1,641 587 1,177 538** 

* Ecobee’s eco+ participants did not require opt-in due to existing participation agreements that allowed data 

sharing. 

** Although approximately 15,000 Resideo customers were recruited to opt in to the study, only 38 thermostat 

users agreed to opt in. To support the study and sample, Energy Trust of Oregon provided data for an additional 

500 participants and comparison group customers for the Resideo ConnectedSavings pilot.  

 

Although the Apex team attempted to develop a representative sample of 

thermostat users in the Northwest, this study’s sample is likely not representative 

due to the complexity of data collection that limited the sample size and 

characteristics. The primary intent of this study was to establish a correlation 

between thermostat metrics and energy savings (Section 4.3). This analysis does 

not require that the sample represent the population under the assumption that the 

metrics and savings are correlated and benefited from the inclusion of multiple 

thermostat models with a breadth of thermostat characteristics. The correlation 

holds even for customers receiving optimization because optimization should impact 

both thermostat metrics and energy savings. Outside of this correlation (see 

Section 4.2), the gathered data was a “convenience sample” (i.e., not 

representative), and results should be treated as suggestive rather than definitive.  

 

 Survey Results 

Of the nearly 4,000 thermostat users in the study, approximately 1,850 completed 

a survey of major energy use change behaviors as part of the opt-in process. 

Surveys of opt-in customers found that they tend to install their smart thermostats 

prior to other energy-use affecting actions. Figure 2 shows that a higher proportion 

of the residents who made major changes took at least one action after or during 

smart thermostat installation than before. Figure 3 breaks the survey results down 

by the various activities. It shows that the asymmetry in time (i.e., more actions 

after/during than before) holds true across most of the activities.  
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Figure 2. Overall Timing of Major Changes Relative to Smart Thermostat Installation 

(Electric Vehicles, Renovations, HVAC System, Occupancy)* 

  
* Sums to more than 100% because of multiple response survey questions. 

 

Figure 3. Individual Energy Use Changes and Timing Relative to Smart Thermostat 

Installation 

 

 

See Section 4.2 for an analysis of the site-level impacts on energy use from each of 

these changes. 
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 Merged Sample of Thermostat and Billing Data 

As described in Section 2.1.3, once the thermostat users were in the study, the 

Apex team collected data from manufacturers and utilities. As shown in 

Table 2, thermostat manufacturers were able to provide thermostat data for over 

85% of the thermostat users (3,367 of 3,943) in the study using serial numbers, 

email addresses, or direct recruiting links. Reasons for data loss at this stage 

included lack of availability of thermostat data during the analysis period or inability 

to match the provided identifiers within the manufacturers’ customer database. 

Next, utilities matched approximately 43% of the thermostat users (1,452 of 

3,367) with billing data. Most of the attrition at this stage was in the ecobee dataset 

due to the inability to match customer emails to the emails on file with the 

participating utilities.  

Finally, to be included in the merged sample, the study required at least one month 

of baseline (pre-installation) and reporting (post-installation) data, which was 

approximately 80% of those thermostat users with billing data (1,166 of 1,452). 

This step also included several minor data cleaning filters. They were: 

• Drop records with a net metered billing code. 

• Drop records with missing or negative data, or 0 kWh reads. 

• Drop records with excessively high energy use (greater than 20 kW or 

120 kBTU/hr continuous operation). 

• After calendarization, drop records with less than 15 days of data in the 

month. 

• Drop records more than 3 standard deviations above or below the 

average use for the month. 

• (For Energy Trust of Oregon only) Drop records where bill duration was 

less than 15 days or greater than 45 days, and usage differed by greater 

than 30% from the prior month, assuming either a missed bill or the 

median bill duration (30 days).22 

 

 
22 Energy Trust of Oregon data was provided with bill dates but not bill durations. Therefore, 
bill durations had to be calculated from prior bill dates. When there was a gap of greater 

than one standard bill duration, this logic had to be applied. 
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Table 2. Attrition of Thermostats from Data Received to Merged Sample 

Attrition Step 

Total 

Thermostat 

Users 

Ecobee Emerson Nest Resideo 

In the Study 3,943 1,641 587 1,177 538 

With 

Thermostat 

Data 

3,367 1,641 95 1,106 525 

Match to 

Billing Data 
1,452 247 61 747 397 

Merged 

Sample 
1,166 194 58 576 338 

 

Table 3 shows the characteristics of the merged sample by utility and thermostat 

manufacturer. The majority of thermostats in the study are in the Energy Trust of 

Oregon territory, followed by Puget Sound Energy. 

Table 3. Merged Sample Sites by Utility and Manufacturer 

 Avista Clark 

Energy 

Trust 

of 

Oregon 

PSE 

Ecobee 0 0 123 66 

Emerson 16 6 39 0 

Nest 80 54 360 113 

Resideo 2 1 315 1 

Note: The sum of sites is higher than Table 2 as some  

participants had accounts from multiple utilities. 

After the merged sample data cleaning, the Apex team applied additional filters on 

data quality to arrive at the site-level analysis dataset and the pooled analysis 

dataset, described in Sections 3.4 and 3.5 below. These filters were similar but 

slightly different for the two analyses. The pooled analysis aimed to assess the 

aggregate energy savings, which required different filters than for the goal of 

correlation after calculating site-level savings. In brief, the two main differences 

were as follows: 

• The pooled analysis included a comparison group, so post-period data 

sufficiency checks refer to the second window of analysis, not the period 

of time after installation. Sites with no thermostat installation were 

important to retain because their data in the second window, without 
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thermostat installation, constituted the counterfactual for thermostat 

installers. 

• Thermostat model fits, and other data quality filters are important to the 

site-level analysis but irrelevant to the pooled analysis. 

 

 Site-Level Sample Data  

The data quality filters on the site-level sample focused on obtaining the best data 

for correlation analysis. That effort required filters on both thermostat data quality 

and billing data quality. The data for each site had to meet the following criteria: 

• At least 9 months of data in the baseline and reporting periods. 

• Absolute values of site-level savings less than 50% of baseline usage. 

• At least 30 core heating days in the calculation of telemetry metrics. 

• Not in the top and bottom 0.5% of customers by annual energy use. 

• Survey filters: Resident had not purchased an electric vehicle (for 

electricity meters only), updated their HVAC system, performed a major 

renovation, or had increased occupancy in their home, during or after the 

thermostat installation. Thermostats without associated survey responses 

were left in the sample. 

Table 4Error! Reference source not found. shows the attrition across each of these 

steps. In the site-level analysis dataset, about 10% of the sites have a thermostat 

connected to a heat pump, while 90% have a thermostat connected to a furnace or 

boiler. Table 5 shows the final sample by system type and fuel. 
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Table 4. Attrition from Site-Level Analysis Data Quality Filters, by Manufacturer 

Attrition Step Total Ecobee Emerson Nest Resideo 

Merged sample 1,166 194 58 576 338 

At least 9 

months of pre- 

and post-billing 

data 

805 128 58 404 215 

Absolute value of 

ΔNAC less than 

50% 

776 127 58 392 199 

More than 30 

core heating 

days 

765 125 58 386 196 

Remove top and 

bottom 0.5% by 

energy use 

762 125 58 383 196 

Survey filters 587 125 37 236 189 

 

In the site-level analysis dataset, about 10% of the sites have a thermostat 

connected to a heat pump, while 90% have a thermostat connected to a furnace or 

boiler, as shown in Table 5. 

Table 5. Site-Level Analysis Sample by System Type and Analyzed Fuel Consumption Data 

Heating Type Fuel n 

Gas Furnace 
Gas 497 

Electricity 381 

Heat Pump with 

Electric Backup 

Gas 13 

Electricity 43 

Electric Furnace 
Gas 2 

Electricity 15 

Heat Pump without 

Electric Backup 

Gas 1 

Electricity 2 

 

In terms of heating zones (HZ), 13% of the sites are located in HZ 2/3 (cold/very 

cold), while 87% are located in HZ 1 (marine). The Apex team had hoped to 

acquire a larger sample of heat pumps and cold-climate sites. The relative size of 

the installed base in Puget Sound and Energy Trust of Oregon territory dictated the 

concentration of HZ results.  
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 Pooled Analysis Data Set 

The pooled analysis data set used slightly different data quality filters than the site-

level analysis data set. Table 6 shows the attrition due to these data quality filters, 

by system type. Table 7 shows the final counts of sites by manufacturer and system 

type. 

Table 6. Attrition from Pooled Analysis Data Quality Filters, by Manufacturer 

Attrition Step* Nest Ecobee Resideo Emerson 

Merged sample 732 245 391 60 

Activation date before the 

pre-period 
732 221 391 60 

Survey filters 413 221 380 37 

At least 10 months billing 

data in each window 
306 167 300 35 

* Note that this sample includes comparison group customers who had no post-period billing data 

after thermostat installation, and therefore starts with a larger initial n. 

 

Table 7. Final Numbers by Manufacturer Type and Analyzed Fuel Consumption Data 

Heating Type Fuel Nest Ecobee Resideo Emerson 

Gas Furnace or Boiler 
Electricity 207 114 202 27 

Gas 267 139 242 30 

Heat Pump with 

Electric Backup 

Electricity 21 14 36 2 

Gas 6 10 6 1 

Electric Furnace or 

Boiler 
Electricity 10 5 10 0 

Heat Pump with Non-

Electric Backup 
Electricity 2 1 2 0 

 

 

 Energy Savings Analysis Results 

 Thermostat Telemetry Analysis 

Modification of ENERGY STAR Software and Anonymous Data Analysis  

Using the method described in Section 2.2, the Apex team analyzed hourly, 

anonymous thermostat telemetry data from 512 thermostats, including 275 with 

heat pumps, to test the planned additional metrics for inclusion in the ENERGY 

STAR Connected Thermostat Field Savings software. Secondarily, the Apex team 

performed an exploratory analysis of this data to determine whether other additions 

could potentially capture mechanisms for savings effectively.  
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To support the primary goal of correlating metrics with site-level energy changes, 

the Apex team aimed to create the most descriptive metrics possible. The more 

effective a given metric is at characterizing thermostat operation characteristics 

(e.g., setpoints, variation in indoor temperature, strip heat use), the better it will 

represent the thermostat side of the correlation. Therefore, the Apex team 

assessed hourly telemetry data and resulting summary metrics to identify whether 

they described real states of operation and varied among sites. The remainder of 

this section provides an overview of key metrics and their relationship with hourly 

telemetry data. 

The ENERGY STAR method fits a linear model between average daily equipment 

runtime and thermal demand (indoor-outdoor temperature difference) to produce a 

modeled runtime. Thermostat metrics are then calculated from this runtime model.  

For each site and each HVAC season (heating and cooling), the ENERGY STAR 

software fits two basic parameters for the runtime metric. The first is a temperature 

offset representing the indoor-outdoor Delta-T, at which active space conditioning 

comes online (heating- or cooling-degree hours start being counted when Delta-T 

exceeds this value). The second is a loading constant that relates heating- or 

cooling-degree-hours to HVAC runtime. Runtime is then modeled as the product of 

degree-hours and the loading constant. The primary runtime reduction metrics are 

generated by calculating the percent difference between actual runtime and a 

modeled counterfactual based on a stipulated indoor temperature profile. In this 

percent-difference formulation, the same loading constant appears in the 

numerator and the denominator, so by cancellation, what we call “runtime 

reduction” is equivalent to the percent reduction in estimated heating- or cooling-

degree-hours. Because of this, it can be useful (and more direct) to think of the 

runtime reduction metric as a set-back metric. 

In the base ENERGY STAR formulation, this counterfactual is a constant “comfort 

temperature” equal to the 90th percentile most comfortable (cooler in the cooling 

season, warmer in the heating season). In this study, the Apex team uses regional 

baseline indoor temperatures calculated from the RBSA study and segmented by 

heating and cooling climate zone. The associated metrics are: 

• Runtime Reduction with Comfort Temperature Baseline 

• Runtime Reduction with Regional Baseline 

Figure 4Figure 4.  shows an example of the actual and counterfactual daily runtime 

for a single thermostat generated via this method. 
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Figure 4. Daily Runtime Based on Comfort Temperature 

 

 

The thermostat telemetry data also contains useful information about the rate of 

heat loss and gain within the residence. The rate of indoor temperature change 

towards the outdoor temperature when no HVAC is running may indicate the quality 

of the building shell. The rate of heating or cooling when HVAC is running may 

indicate undersizing or oversizing of HVAC systems. As secondary metrics in the 

correlation analysis, the Apex team believed these terms might be useful and added 

them to the software. The terms are defined as follows, and examples of calculation 

periods are shown in Figure 5. The associated metrics are: 

• Heat loss constant (heating) / heat gain constant (cooling): Average 

temperature change rate relative to indoor-outdoor temperature 

difference, when HVAC runs less than 5 minutes per hour (this 5-minute 

threshold was selected to account for hours with very low HVAC usage 

and the gradient metric is relatively insensitive to it). 

• HVAC constant: Average temperature change rate relative to indoor-

outdoor temperature difference, when HVAC runs over 15 minutes per 

hour. 
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Figure 5. Indoor and Outdoor Temperature versus Heating Runtime, with the Periods of 

Time Used for Calculating the Heat Loss Constant and HVAC Constant Highlighted 

 

 

The Apex team added calculations for several additional metrics related to heat 

pump resistance utilization, including DNRU, Excess Resistance Score, and a 

sigmoid integral. The base of these metrics comes from the ENERGY STAR-defined 

resistance utilization metric. All three additional heat pump metrics are described in 

Appendix 1: Telemetry Analysis Memo Addendum. For example, the sigmoid 

calculation is a compact representation of resistance heat utilization (RHU) across 

all temperature bins. A sigmoid function is fit to RHU and integrated between 0F 

and 60F. The result is a single value that corresponds to how much resistance heat 

the thermostat has called for within a range of temperatures. A fitted sigmoid to 

RHU is shown in Figure 6. 

Figure 6. Sigmoid Fitted to Binned Resistance Heat Utilization 
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Resulting Thermostat Metrics Analysis 

After the thermostat metrics were generated by manufacturers and transferred to 

the Apex team, the team reviewed each metric and assessed the correlation among 

metrics to gain a better understanding of which metrics might provide duplicative or 

new information. Figure 7 and Figure 8 show a selection of the output metrics 

compared against each other. The distribution of each metric is found in the 

diagonals for gas and electric meters, respectively. A few key findings on individual 

metrics include: 

• The regional baseline runtime metric is centered around zero, indicating 

that the indoor temperatures in the analysis sample are close to the 

regional averages used to develop the baseline. 

• The comfort baseline runtime metric is centered around 10%. By its 

nature, it is assuming an inefficient baseline temperature, so it is always 

positive and therefore may not necessarily reflect actual savings or 

runtime reductions.  

• Heat loss and HVAC heating constants have skewed distributions: homes 

in the tails of these distributions likely have weatherization and HVAC 

optimization opportunities, respectively. 

In terms of correlations among metrics (non-diagonals), notable findings include: 

• The runtime reduction using an individual comfort temperature baseline 

showed a weak correlation with runtime reduction using a Northwest 

regional baseline, suggesting that they measure different effects. 

However, ENERGY STAR also includes its regional baseline for runtime 

reduction, which correlates strongly with the Northwest baseline.  

• There appears to be a weak positive correlation between the heat loss 

constant and the runtime metrics and a weak negative correlation 

between the HVAC constants and the runtime metrics, indicating that 

some of the information about building and HVAC performance may be 

captured through these metrics. 
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Figure 7. Gas Furnace Metrics (n=497) 
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Figure 8. Heat Pump (n=43) and Electric Furnace Metrics (n=15) 

 

 

 Billing Analysis 

Pooled Analysis  

After cleaning the consumption data, the Apex team conducted the pooled analysis 

as described in Section 2.3. The Apex team modeled all eight possible combinations 

of fuel type and system type, but only three of the combinations had a sufficient 



 

 

APEX ANALYTICS Page | 36 
 

(>50) number of sites: gas data for sites with gas furnaces, electric data for sites 

with gas furnaces, and electric data for sites with heat pumps and electric backup.  

The modeled whole-home energy savings due to smart thermostat installation are 

shown in Table 8. As noted previously, the sample in this analysis is not necessarily 

representative of the region or typical thermostat users, so results of the pooled 

analysis should be considered suggestive (i.e., containing unknown levels of bias) 

and not definitive estimates of energy savings. The Apex team found statistically 

significant gas savings (43 therms, 5%) for sites with gas furnaces and statistically 

significant electric savings (670 kWh, 4.5%) for sites with heat pumps and electric 

backup.  

The team found a moderate increase in electric use (2.4%, 220 kWh) for homes 

with gas furnaces, potentially representing an increase in either furnace fan usage 

or cooling usage. A model interacting the post variable with month suggests that 

increased use for this group was concentrated in summer months, suggesting an 

increase in cooling usage, but given the relatively low precision on the yearly 

estimate, the monthly estimates should be interpreted with caution.  

For all three groups, the team isolated the effect of optimization during portions of 

the post-period. Its impact enhanced savings by 2% to 6% in addition to savings 

from smart thermostat installation. Only 27% of thermostats (185 gas furnace, 15 

heat pump) received optimization during the analysis period. Table 9 provides pre- 

and post-consumption data; other detailed modeling results, including the gas 

furnace electric use model with monthly estimates for impacts, can be found in  

Appendix 2: Billing Analysis Details. 

Table 8. Pooled Analysis Results 

Heating 

System Type 
Fuel n 

Comp. 

Group n 

Post-Installation 

Average 

Savings 

Std Error 

of Avg 

Savings 

Percent 

Savings 

Optimization 

Monthly 

Avg. Effect* 

Gas Furnace 

or Boiler 

Electricity 550 104 -220 kWh 110 kWh -2.4% 2.8%* 

Gas 678 133 43 therms 20 therms 5% 6.3%* 

Heat Pump 

with Electric 

Backup 

Electricity 73 15 670 kWh 402 kWh 4.5% 1.9%* 

Gas 23 - -34 therms 54 therms -5.1% -28.8% 

Electric 

Furnace or 

Boiler 

Electricity 25 - 760 kWh 789 kWh 5% -2.3% 
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Heating 

System Type 
Fuel n 

Comp. 

Group n 

Post-Installation 

Average 

Savings 

Std Error 

of Avg 

Savings 

Percent 

Savings 

Optimization 

Monthly 

Avg. Effect* 

Heat Pump 

with Non-

Electric 

Backup 

Electricity 5 - 1477 kWh 1257 kWh 10% NA 

* Optimization savings do not reflect a yearly estimate of savings. They are an estimate of the monthly average 

effect during optimization for affected users, with users having differing numbers of months of optimization. 

 

Table 9. Pre- and Post-Consumption Usage 

Heating 

System Type 
Fuel 

Pre-Period Average 

Daily Consumption 

Post-Period Average 

Daily Consumption 

Gas Furnace 

or Boiler 

Electricity 

(kWh) 
25.09 23.73 

Gas 

(therms) 
2.36 2.2 

Heat Pump 

with Electric 

Backup 

Electricity 

(kWh) 
40.62 36.66 

Gas 

(therms) 
1.82 1.48 

Electric 

Furnace or 

Boiler 

Electricity 

(kWh) 
41.59 35.88 

Heat Pump 

with Non-

Electric 

Backup 

Electricity 

(kWh) 
40.29 35.84 

 

The detected gas savings align with the Energy Trust of Oregon studies by Apex 

Analytics in 2015 and by Recurve in 2015 and 2017, as described in Section 1.3. 

Although this study’s primary goal was to correlate site-level energy savings with 

thermostat metrics, the fact that aggregate energy savings are similar to other 

studies (see Figure 9) provides a measure of confidence that the sample sourced 

from the opt-in process is not biased due to the data collection strategy approach. 

The findings for heat pumps from the pooled analysis show a much higher point 

estimate than other studies, but error bars are nearly as wide as the point estimate 

itself. 
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Figure 9. Comparison of Pooled Analysis Results with Other Studies 

 

 

In addition to comparing with other studies, the Apex team tested several 

variations of this base model, which are reported below. Detailed outputs can be 

found in  

Appendix 2: Billing Analysis Details. 

Occupancy Sensing: The Apex team tested the impact of including an occupancy 

sensing term and interacting it with the post period term. This term was a dummy 

variable that was true for thermostats with a built-in onboard or functioning 

external occupancy sensor, not for thermostats that rely on geofencing. For the gas 

model, sites with occupancy sensing were predicted to use more energy prior to 

installation (178 more therms per year) and save more energy after installing an 
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occupancy sensing thermostat (112 therms per year). However, the estimated 

savings for thermostats without this feature dropped to zero. The opposite was true 

for the electric groups (predicted energy use and savings also went down for 

occupancy sensing thermostats). Interpretation of these results is difficult—prior 

studies have found that direct occupancy sensing thermostats save more energy, 

but introducing these additional terms to the model may consume too many 

degrees of freedom, resulting in overfitting. Given the limited sample sizes, we do 

report this as a main study finding. Table 10 shows the number of sites with 

occupancy sensing versus the number of sites that received optimization at some 

point.  

Table 10. Counts of Thermostats with Occupancy Sensing Features, and Who Received 

Optimization (Gas Model for Gas Furnaces) 

 No 

Optimization 
Optimization 

No Occupancy 196 57 

Occupancy 297 128 

 

Climate Zone: None of the tested models showed significant impacts or changes to 

post-installation estimates by climate zone. However, only 64 customers were 

outside of HZ1. 

Time Window: As described in Section 2.3, the modeling windows were selected to 

align with the site-level analysis, which maximized available sites with post-period 

data by setting its post-period as late as possible. The Apex team also tested 

setting the post-period window to December 2018–November 2019 to create a 

larger available comparison group. Doing so narrowed the confidence intervals 

slightly on the post term but increased the confidence intervals on the opt term 

because the number of time points with optimization dropped. The savings values 

in the new window did not change directionally, although gas savings increased 

from 43 to 65 therms, and electric heat pump savings decreased from 670 kWh to 

563 kWh. Therefore, the Apex team’s results are based on the post-period window 

that is consistent with the site-level analysis (March 2019–February 2020). 

Baseline Offsets for Site-Level Analysis 

To establish adjustments for the site-level models, the Apex team implemented a 

simple fixed-effects model with HDD and CDD terms to calculate baseline offsets for 

use in site-level billing analysis. These baseline offsets do not impact the correlation 

analysis because they shift the estimated savings for all sites. However, they adjust 

for bias due to changes in the counterfactual energy usage across the pre- and 

post-periods, providing a more realistic number for average savings. The team 
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reports the baseline offsets applied to savings for each fuel and system type in 

Table 11.  

Table 11. Baseline Offsets from Pooled Analysis for Site-Level Analysis 

System Type Fuel 

Type 

N for 

Calculation 

Adjustment to 

Savings 

Gas furnace or boiler Gas 312 +12 therms 

Gas furnace or boiler Electric 219 -379 kWh 

Heat pump with electric backup Electric 52 N/A* 
 *Sample size too small to calculate baseline offset 

 

Site-Level Billing Results 

The Apex team calculated ΔNAC (i.e., site-level savings) for all sites in the site-level 

analysis dataset, and then applied the two baseline offsets to gas and electric 

savings for the gas furnace or boiler group to arrive at adjusted site-level savings 

estimates. Because these calculations are at the site level, the analysis returns a 

distribution site-level savings values—one for each site. 

The distributions of site-level savings estimates in the three main groups are shown 

in Figure 10, Figure 11, and Figure 12. Notable findings include: 

• Gas site-level savings for gas-heated homes have a wide distribution 

ranging from –200 to +250 therms of savings. 

• Most electricity ΔNAC for gas-heated homes fall in the –1000 to +1000 

kWh range, while electricity ΔNAC from heat pumps comes from a much 

smaller sample and has a relatively wider distribution. 

Figure 10. Gas Savings (Site Level) for Gas Furnaces and Boilers -  

Savings by Percent (left) and Therms (right) 
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Figure 11. Electric Savings (Site-Level) for Gas Furnaces and Boilers,  

Savings by Percent (left) and kWh (right)

 

 

Figure 12. Electric Savings (Site-Level) for Heat Pumps with Electric Backup by Percent 

(left) and kWh (right) 

 

 

Although there is a relatively wide distribution evident in the histograms, this 

distribution comes from site-level exogenous changes in energy use. The baseline 

offsets derived from the pooled analysis were modest and consistently applied and 

therefore did not influence the distribution or the correlations.  

Table 12 shows the average adjusted ΔNAC estimates from site-level analysis. Note 

that these differ from the pooled analysis for two reasons: 
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• They include optimization (which creates real changes to thermostat 

runtimes and therefore should be kept for correlation analysis). 

• They have additional filters applied that exclude sites based on thermostat 

data criteria. 

Table 12. Site-Level Savings Results 

Heating System 

Type Fuel 
n Average ΔNAC 

Std Error of 

Average Savings 

Gas Furnace or 

Boiler 

Electricity 381 187 96 

Gas 497 31 6 

Heat Pump with 

Electric Backup 

Electricity 43 1291 364 

Gas 13 37 36 

Electric Furnace 

or Boiler 

Electricity 15 721 458 

Gas 2 -7 22 

Heat Pump with 

Non-Electric 

Backup 

Electricity 2 -1340 1353 

Gas 1 158 - 

 

The major energy-use changes reported in the opt-in surveys had a detectable 

impact on energy use in the post-period, as measured at the site level. Figure 13 

shows the difference in site-level estimated ΔNAC for each group with major energy 

use changes in the post-period, compared to the sites in the main data set with no 

reported changes in the post-period.  

The total sample in each of these groups is not sufficiently large to make 

statistically significant conclusions. However, the Apex team found that thermostat 

users with a new HVAC system had approximately 17 therms more in gas savings 

and 100 kWh less in electric savings than the main analysis, while the addition of 

occupants in the home erased or reversed all detectable gas and electric savings 

(Table 13). Both electric vehicle purchases, and major renovations increased 

electricity use substantially (700 to 1,100 kWh), although both groups saved 

additional therms compared to the main dataset. Although this is a small sample of 

the main data set, the magnitude and direction of these differences were 

substantial enough to merit removing them from the analysis. Sites that underwent 

any of these changes during or after installation were removed from the energy use 

and correlation analyses. 
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Figure 13. Major Energy-Use Changes and Site-Level Savings Differences  

 

 

Table 13. Major Energy-Use Changes and Site-Level Savings Differences 

 
n Gas (% 

of total) 

n 

Electricity 

(% of 

total) 

Difference in Savings from Analysis Dataset 

Therms kWh Therms % kWh % 

Electric 

Vehicle 

Purchase  

38 (4%) 23 (3%) 26 -1074 3% -11% 

Occupancy 

Increase 
59 (6%) 45 (5%) -18 -466 -2% -5% 

Major 

Renovation 
53 (5%) 38 (5%) 11 -735 1% -8% 

New HVAC 73 (7%) 55 (7%) 17 -97 2% -1% 

 

 Correlation of Metrics with Savings 

The Apex team tested 28 linear correlation models as described in Section 2.4. For 

each system and fuel type combination, the Apex team reports three model types 

in Table 14.  
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• Model A: Model that closely aligns with the expected ENERGY STAR 

software 

• Model B: Minimal model with only the relevant primary metric(s) 

• Model C: “Best” model(s) that includes additional secondary metrics to 

improve the fit 

For additional tested models and additional details on the models presented below, 

see Appendix 3: Correlation Analysis Details.  

In addition to the adjusted R2 for each model, the table also includes the 5th and 

95th percentiles of NMBE for one hundred out-of-sample cross-validation runs. 

Seventy percent of the sample (in-sample group) is used to fit a model and predict 

the mean for the other thirty percent (out-of-sample group). The NMBE is the 

average difference between the predicted and actual savings divided by the 

average savings for the out-of-sample group. These would indicate the bounds of 

bias error if the model were used to predict savings for a similar number of out-of-

sample thermostats (such as new models providing thermostat metrics only)23. The 

adjusted R2 describes the portion of variability in savings that the model captures. 

Table 14. Table of Correlation Results 

System 
Type 

Fuel n 
Model 
Type 

Variables in Model 
Bias 
5th % 

Bias 
95th % 

R2 
adj. 

Gas Furnace 
or Boiler 

Electricity 322 A 
savings ~ 
regional_runtime_metric_heating + 

regional_runtime_metric_cooling 

-517% 983% 0.00 

Gas Furnace 

or Boiler 
Electricity 322 B 

savings ~ 

comfort_runtime_metric_heating + 
comfort_runtime_metric_cooling 

-283% 699% 0.00 

Gas Furnace 

or Boiler 
Electricity 314 C 

savings ~ 

regional_runtime_metric_heating + 
regional_runtime_metric_cooling + 
heat_loss_constant_heating + 

heat_gain_constant_cooling + 
hvac_constant_heating + 
hvac_constant_cooling + 

weekly_temperature_variance_heating 

-333% 366% 0.00 

Gas Furnace 
or Boiler 

Gas 497 A 
savings ~ 
regional_runtime_metric_heating 

-46% 117% 0.03 

Gas Furnace 
or Boiler 

Gas 497 B 
savings ~ 
comfort_runtime_metric_heating 

-39% 105% 0.00 

Gas Furnace 

or Boiler 
Gas 497 C 

savings ~ 
comfort_runtime_metric_heating + 

heat_loss_constant_heating + 
hvac_constant_heating 

-38% 99% 0.01 

 
23 Acceptable NMBE bounds can be understood as similar to a 95% confidence interval 

width, where ±10% indicates that 95% of predictions will fall within 10% of the true mean.  
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System 

Type 
Fuel n 

Model 

Type 
Variables in Model 

Bias 

5th % 

Bias 

95th % 

R2 

adj. 

Heat Pump 
w Electric 

Backup 

Electricity 39 A 

savings ~ 
regional_runtime_metric_heating + 

regional_runtime_metric_cooling + 
excess_resistance_score 

-86% 274% 0.13 

Heat Pump 
w Electric 
Backup 

Electricity 39 B 

savings ~ 
comfort_runtime_metric_heating + 
comfort_runtime_metric_cooling + 
excess_resistance_score 

-75% 204% 0.12 

Heat Pump 
w Electric 

Backup 
 

Electricity 39 C 

savings ~ 
regional_runtime_metric_heating + 

regional_runtime_metric_cooling + 
dnru_reduction 

-79% 237% 0.04 

Heat Pump 
w Electric 
Backup 

 

Electricity 39 C 

savings ~ 
regional_runtime_metric_heating + 
regional_runtime_metric_cooling + 

sigmoid_integral 

-75% 196% -0.05 

 

The best correlation model for gas usage from the gas furnace or boiler group used 

the comfort runtime metric as a primary metric and included secondary metrics for 

the heat loss constant and the HVAC constant during the heating season (Model C 

above). The resulting correlation factor was 0.2% ΔNAC per 1% ENERGY STAR 

heating reduction, with an out-of-sample bias of -38% to +99%. This results in a 

range of 0.12% to 0.40% ΔNAC per 1% ENERGY STAR heating reduction. The Apex 

team classifies this as a positive but weak correlation. Figure 14 displays the site-

level savings and primary metric of heating runtime reduction, with a line of best fit 

based only on the primary metric. 

Figure 14. Site-Level Natural Gas Savings for Gas Furnace and Boiler Group versus Runtime 

Reduction Using the Regional Baseline, with a Line of Best Fit 
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The best correlation model for electric use from the gas furnace or boiler group 

used regional runtime metrics for heating and cooling as primary metrics and 

included secondary metrics for heat loss/gain, HVAC constant for heating and 

cooling, and weekly temperature variance. The resulting correlation factor was 

0.07% ΔNAC per 1% ENERGY STAR heating reduction, with an out-of-sample bias 

of -333% to +336%. This results in a range of -0.16% to 0.31% ΔNAC per 1% 

ENERGY STAR heating reduction. The Apex team classifies this result as no 

correlation. Figure 15 displays the site-level savings and primary metric of heating 

runtime reduction, with a line of best fit based only on the primary metric.  

Figure 16 displays the site-level savings and primary metric of cooling runtime 

reduction, with a line of best fit based only on the primary metric. 

 

Figure 15. Site-Level Electricity Savings for Gas Furnace and Boiler Group versus Heating 

Runtime Reduction Using the Regional Baseline, with a Line of Best Fit 
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Figure 16. Site-Level Electricity Savings for Gas Furnace and Boiler Group versus Cooling 

Runtime Reduction Using the Regional Baseline, with a Line of Best Fit 

 

 

The best correlation model for electric use from the heat pump with electric backup 

group used the regional runtime metrics for heating and cooling as primary metrics 

and included secondary metrics for the excess resistance score. The resulting 

correlation factor was -0.2% ΔNAC per 1% ENERGY STAR heating reduction, with 

an out-of-sample bias of -86% to 274%. This results in a range of -0.75% 

to -0.03% ΔNAC per 1% ENERGY STAR heating reduction. The Apex team classifies 

this result as no correlation or a weak correlation in a non-intuitive direction 

(increased compressor runtime could result in resistance heat savings and overall 

energy savings), with the caveat that the number of sites in this analysis is too low 

to generate a conclusive result. Given that the out-of-sample bias was lower than 

for the electric use model with the gas furnace or boiler group, a larger sample 

might have generated a tighter correlation. Also, note that the excess resistance 

score and the sigmoid integral performed about equally, and any future research 

including one should also include the other. Figure 17 depicts the site-level savings 

and primary metric of heating runtime reduction, with a line of best fit based only 

on the primary metric.  

Figure 18 displays the site-level savings and primary metric of cooling runtime 

reduction, with a line of best fit based only on the primary metric. 
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Figure 17. Site-Level Electricity Savings for Heat Pump with Electric Backup Group versus 

Heating Runtime Reduction Using the Regional Baseline, with a Line of Best Fit 

 

 

Figure 18. Site-Level Electricity Savings for Heat Pump with Electric Backup Group versus 

Cooling Runtime Reduction Using the Regional Baseline, with a Line of Best Fit 

 

 

In summary, none of the models attempting to correlate metrics generated from 

thermostat metrics with site-level savings generated more than a weak correlation. 

Models for the primary heating fuel of gas furnaces (gas) and heat pumps 

(electricity) were suggestive of an underlying correlation but were not strong 

enough to function as bases for estimating savings for a QPL or distinguish one 
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brand of thermostat from another. In practical terms, the out-of-sample bias error 

for the best model (i.e., gas savings) suggests that a thermostat model with a true 

savings of 32 therms could be assigned a savings value of 20 to 64 therms, a large 

range for a product that will be submitted to cost-effectiveness testing and 

differentiated from other competing products.  

Therefore, the Apex team could not establish a method to use thermostat-derived 

metrics to estimate these energy savings with sufficient reliability for use by 

Northwest utilities. There are two likely causes of weak or non-existent correlation: 

• The variation in ΔNAC is large and often unrelated to smart thermostat 

installation. 

• Because the runtime reduction metrics cannot be conclusively adjusted 

for site-level pre-period baselines, it is likely that a large portion of the 

variation in this metric is tied to pre-existing behaviors while a smaller 

portion is because of the thermostat installation. 

The Apex team expects that, while a larger study could improve the out-of-sample 

bias, these two factors would limit the ability of program administrators and other 

organizations to use thermostat-sourced metrics to predict energy savings for given 

groups of thermostats. A pre-period site-level baseline for indoor temperatures or 

thermostat runtimes could substantially improve all the generated thermostat 

metrics, but the Apex team recognizes that the lack of such a baseline was the 

impetus for developing the ENERGY STAR comfort temperature methodology. 

 

 Key Findings and Future Research Considerations 

Finding: Smart thermostat installation resulted in statistically significant energy 

savings, reducing energy use by about 5% of primary heating fuel for gas furnaces 

and heat pumps. This result, and its consistency with other studies, suggests that 

smart thermostats continue to save energy. Although the primary goal of this study 

was not to assess aggregate energy savings, it nonetheless confirms that they 

exist. 

Finding: Major home and life changes occurring in a similar timeframe to 

thermostat installation impact energy savings substantially. Compared to the 

analysis dataset, groups where major energy-use changes occurred differed in 

ΔNAC values by up to 25 therms and 1000 kWh, on the order of the impact of 

thermostat installation. In the Apex team’s sample, these changes tended to occur 

after smart thermostat installation, implying that both a quasi-experimental and 
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future installer comparison group would not generate a comparable counterfactual 

without adjustment. 

Future Research Consideration: Future studies should use either surveys like 

those conducted for this study, or another disaggregation method to account 

for major energy-use changes or these changes will introduce bias into the 

final results. 

Finding: Energy savings were insufficiently correlated with thermostat metrics to 

establish a method of estimating savings for qualifying thermostats into QPLs using 

thermostat metrics only. The most promising model, with approximately 500 

thermostats controlling gas furnaces or boilers and several secondary metrics in the 

model, found only a weak correlation between runtime reduction and savings.  

Future Research Consideration: Either a very large sample (i.e., 10,000 

sites) or a different method of conducting this research is required to 

definitively assess the validity of thermostat metrics in predicting energy 

savings. A larger sample would help reduce the prediction uncertainty, but 

reducing bias and variability in the sample requires information about the 

true baseline, such as prior thermostat type and setpoints. This type of 

research would inherently require legal and technical infrastructure in place 

with customers and/or manufacturers before thermostat installation. 

Future Research Consideration: There is potential to use some of the additional 

thermostat metrics for behavioral messaging or HVAC diagnostics by energy 

efficiency programs. Specifically, the metrics related to heat gain or loss can help 

identify issues with the building shell (for example, leaky homes, poor insulation), 

while metrics related to HVAC and resistance heat performance can help diagnose 

potential HVAC commissioning or sizing issues. 

Future Research Consideration: Navigating legal and technical requirements with 

thermostat manufacturers is a time-intensive process. Sufficient lead time on any 

study or ongoing engagement should be built in to allow adequate time for these 

discussions.  



 

 

APEX ANALYTICS Page | 51 
 

Appendix 1: Telemetry Analysis Memo Addendum 

The metrics proposed in this memo are in addition to the existing EPA thermostat 

metrics. The Apex team has also incorporated feedback from the Regional Technical 

Forum. 

New Core Thermostat Metrics 

Runtime Reduction with Regional Temperature Baselines 

Description 

An estimate of percent HVAC runtime reduction after installing a smart thermostat. 

The reduction is estimated relative to the HVAC runtime required to maintain an 

indoor temperature profile that is typical for similar HVAC systems in the same 

climate zone. This calculation is different than the typical ENERGY STAR runtime 

reduction metric because it uses regional baselines from the BPA Smart Residential 

Thermostats Indoor Temperature Baseline Study24 instead of individual comfort 

temperatures.25  

Why is the Apex team calculating this metric? 

This metric is meant to capture the impact of thermostat control on HVAC runtime 

and energy consumption through setpoint adjustments and scheduling. 

How is this metric calculated? 

1. Identify the relevant baseline hourly temperature time series for a thermostat 

based on its climate zone and HVAC type. 

2. Merge the outdoor temperature at the thermostat location in the post-period to 

the baseline temperature using the hour of year as a key. 

3. Use the thermostat’s 𝜏 coefficient from its 𝛼 − 𝜏 model (calculated in accordance 

with EPA’s methodology) to estimate baseline HVAC runtime  

𝑅𝑇𝑏𝑎𝑠𝑒,𝑑 =  𝛼 ×
1

24
∑[∆𝑇𝑑,ℎ(𝑏𝑎𝑠𝑒) −  𝜏]

+

24

ℎ=1

 

4. Calculate various outputs by comparing 𝑅𝑇𝑏𝑎𝑠𝑒,𝑑 and 𝑅𝑇𝑎𝑐𝑡𝑢𝑎𝑙 (the actual 

heating/cooling equipment runtime), including percent runtime reduction 

(𝑅𝑇𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛) and absolute runtime reduction.  
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Demand-Normalized Resistance Utilization Reduction 

Description 

An estimate of the impact of thermostat control on resistance heat utilization. 

Thermostats that rely more on the heat pump compressor than resistance heat in 

the heating season will utilize less energy. Resistance heat utilization is compared 

to the average expected resistance heat utilization from the 2011 RBSA Metering 

dataset26.  

Why is the Apex team calculating this metric? 

The metric captures the level of resistance heat use due to thermostat control 

algorithms. Better control of resistance heat should correlate with better energy 

efficiency. 

How is this metric calculated? 

1. Build an hourly time series of compressor and resistance heat runtime and 

outdoor temperature. 

2. Calculate the outdoor temperature bin for each hour. The bin endpoints are 

specified in the EPA smart thermostat spec.  

3. Calculate the average resistance utilization (RU) within each temperature bin. 

𝑅𝑈𝑏𝑖𝑛 =  ∑
(𝑎𝑢𝑥 𝑅𝑇𝑂𝑇 + 𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 𝑅𝑇𝑂𝑇)

(𝑎𝑢𝑥 𝑅𝑇𝑂𝑇 + 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 𝑅𝑇𝑂𝑇)
𝑂𝑇 ∈𝑏𝑖𝑛

 

4. Calculate a time series of thermal demand. 

𝑇𝐷𝑑,ℎ = [∆𝑇𝑑,ℎ −  𝜏]
+
 

5. Assign a resistance utilization value to each hour based on its outdoor 

temperature. Calculate the weighted average resistance utilization, using thermal 

demand as the weights. 

𝐷𝑁𝑅𝑈 =  
∑ ∑ 𝑅𝑈𝑏𝑖𝑛(𝑑,ℎ)  ×  𝑇𝐷𝑑,ℎ

24
ℎ=1

𝐷
𝑑=1

∑ ∑ 𝑇𝐷𝑑,ℎ
24
ℎ=1

𝐷
𝑑=1

 

6. Follow steps 1 through 4 for a baseline heat pump runtime time series. 

7. Calculate the demand-normalized resistance utilization (DNRU) reduction by 

merging the baseline resistance utilization to the actual resistance utilization time 

series on the hour of year. 
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𝐷𝑁𝑅𝑈𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  
∑ ∑ [𝑅𝑈ℎ𝑜𝑦(𝑑,ℎ),𝑏𝑎𝑠𝑒 − 𝑅𝑈𝑏𝑖𝑛(𝑑,ℎ)]  × 𝑇𝐷𝑑,ℎ

24
ℎ=1

𝐷
𝑑=1

∑ ∑ 𝑇𝐷𝑑,ℎ
24
ℎ=1

𝐷
𝑑=1

 

 

Baseline Calculations 

1. For the proposed runtime reduction metric and the DNRU, indoor temperature 

baselines are calculated by averaging indoor temperatures from the RBSA Metering 

dataset, grouped by climate zone and HVAC system type. The existing EPA metric 

uses “baseline” indoor temperatures (90th percentile core-season indoor 

temperatures) that are site-specific but do not clearly relate to pre-thermostat 

operating conditions. 

2. Resistance heat utilization baseline is calculated by averaging resistance heat 

and heat pump compressor energy use across the RBSA Metering dataset. The 

energy use is converted to runtime estimates, assuming 2.5 kW and 10 kW as the 

heat pump and auxiliary heat capacities, respectively.  

3. The excess resistance metric is a performance score; it is not a savings metric 

relative to a defined baseline.  

 

Additional Test Metrics 

In addition to the two new core metrics that were outlined in the Northwest smart 

thermostat Research Strategy, the Apex team has identified several other metrics 

that could prove beneficial in understanding or strengthening the correlation 

between the thermostat metrics and thermostat energy savings.  

Delta-T Runtime Regression 

Description 

These are coefficients and model fit parameters from an OLS regression between 

runtime and Delta-T (indoor-outdoor temperature difference).  

Why is the Apex team calculating this metric? 

The regression is meant to provide additional perspective on the strength of the 

relationship between runtime and Delta-T. Poor correlation is a red flag for possible 

secondary heat sources which can create problems for the billing data correlation 

analysis.  

How is this metric calculated? 

1. Calculate average Delta-T and total runtime for core heating (or cooling) days. 
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2. Fit regression based on system type.  

• Gas furnace/boiler, air conditioner  

∆𝑇𝑑 =  𝛽0 +  𝛽𝑟𝑢𝑛𝑡𝑖𝑚𝑒 ∙  𝑅𝑇𝑑 

• Heat pump 

∆𝑇𝑑 =  𝛽0 +  𝛽𝑐𝑜𝑚𝑝 ∙ (1 − 0.012 ∗ (47 −  𝑇𝑑
𝑜𝑢𝑡𝑑𝑜𝑜𝑟) ) 𝑅𝑇𝑑

𝑐𝑜𝑚𝑝
+  𝛽𝑟𝑒𝑠 ∙ (𝑅𝑇𝑑

𝑎𝑢𝑥 + 𝑅𝑇𝑑
𝑒𝑚𝑒𝑟) 

 

In the 𝛽𝑐𝑜𝑚𝑝 term, the factor [1 − 𝜌 ∙ (47 − 𝑇𝑑,ℎ
𝑜𝑢𝑡

)] is meant to reflect the fact that 

compressor capacity decreases with colder outdoor air temperatures. In this 

formulation, temperature differences are taken relative to 47°F only because 

nameplate capacity refers to that temperature. The parameter 𝜌 captures the rate 

at which compressor capacity diminishes as outdoor temperatures drop. In systems 

with efficient ducts, it might be common to see 𝜌 values around 0.012, meaning 

that capacity decreases by 1.2% for every 1°F decrease in outdoor air temperature. 

For systems with significant uninsulated ductwork in unconditioned spaces, 𝜌 could 

be 2 or 3 times greater. For this study, the Apex team uses a constant 𝜌 = 0.012. 

3. Record the regression outputs: Model coefficients and their standard errors, R-

squared, CVRMSE. 

Excess Resistance Score 

Description 

This metric quantifies resistance usage that could have been met by available 

(unused) compressor capacity in the same hour or in a nearby hour. It is 

normalized to estimate the fraction of total thermal output (compressor + 

resistance) supplied with resistance heat but could have been supplied with 

compressor heat. As with all metrics, the final formulation should be informed by 

exploratory analysis with the anonymized data (some prominent decision points are 

noted below).  

A value of zero indicates that resistance is only called when the compressor is fully 

utilized and cannot meet the load. Values greater than zero indicate some amount 

of resistance usage that could have been met with unused resistance capacity. 

Because resistance and compressor typically run simultaneously for stage two 

heating calls, it is impossible to get one value unless a system runs entirely in 

(resistance-only) fault mode.  

The metric is built up in a way that is specific to single-speed heat pumps with 

electric resistance backup heat. The approach may be adaptable to two-speed and 
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variable-speed systems if desired. It may also be adaptable to dual-fuel systems, 

but this would only be appropriate if the thermostat manages change-over controls.  

Why is the Apex team calculating this metric? 

The DNRU metric (above) and the resistance utilization sigmoid parameters (below) 

speak to overall resistance usage, reflecting a wide range of factors. Some highly 

influential factors (especially heat pump sizing) are outside of the thermostat’s 

control. This excess resistance metric focuses on the portion of resistance usage 

that can be mitigated by thermostat controls for a given home and heating system.  

How is this metric calculated? 

1. Use model coefficients from the Delta-T runtime regression 𝛽𝑐𝑜𝑚𝑝, 𝛽𝑟𝑒𝑠 that 

capture relative27 magnitude of compressor and resistance output rates. Define 

thermal output variables based on runtime data and the fitted model parameters.  

 𝑅𝑒𝑠𝑑,ℎ
𝑜𝑢𝑡𝑝𝑢𝑡

 = 𝛽𝑟𝑒𝑠 ∙ (𝑅𝑇𝑑, ℎ
𝑎𝑢𝑥 + 𝑅𝑇𝑑, ℎ

𝑒𝑚𝑒𝑟
)  

 𝐶𝑜𝑚𝑝𝑑,ℎ
𝑜𝑢𝑡𝑝𝑢𝑡 = 𝛽𝑐𝑜𝑚𝑝 ∙ (1 − ρ ∙ (47 − 𝑇𝑑,ℎ

𝑜𝑢𝑡
)) ∙ (𝑅𝑇𝑑, ℎ

𝑐𝑜𝑚𝑝
+ 𝑅𝑇𝑑, ℎ

𝑎𝑢𝑥
)  

 𝐶𝑜𝑚𝑝𝑑,ℎ
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = 𝛽𝑐𝑜𝑚𝑝 ∙ (1 − ρ ∙ (47 − 𝑇𝑑,ℎ

𝑜𝑢𝑡
)) ∙ (60 − 𝑅𝑇𝑑, ℎ

𝑐𝑜𝑚𝑝
− 𝑅𝑇𝑑, ℎ

𝑎𝑢𝑥
)  

 

2. Define the hour-level excess resistance variable. This step is complicated 

because resistance usage can sometimes be avoided through pre-heating, which 

may involve compressor usage from the previous hour or even earlier. In defining 

this variable, there are risks of under-counting (by ignoring usable compressor 

capacity from nearby hours) and double-counting (by counting a given amount of 

unused compressor capacity as available to displace resistance usage in two 

separate hours). Because of this, the Apex team calculates three potential 

definitions for the hour-level resistance variable.  

 𝑅𝑒𝑠𝑑,ℎ
𝑒𝑥𝑐𝑒𝑠𝑠,1

 = minimum(𝑅𝑒𝑠𝑑,ℎ
𝑜𝑢𝑡𝑝𝑢𝑡

,   𝐶𝑜𝑚𝑝𝑑,ℎ
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒)  

 𝑅𝑒𝑠𝑑,ℎ
𝑒𝑥𝑐𝑒𝑠𝑠,2

 = minimum(𝑅𝑒𝑠𝑑,ℎ
𝑜𝑢𝑡𝑝𝑢𝑡

+ 𝑅𝑒𝑠𝑑,ℎ−1
𝑜𝑢𝑡𝑝𝑢𝑡

,   𝐶𝑜𝑚𝑝𝑑,ℎ
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 +  𝐶𝑜𝑚𝑝𝑑,ℎ−1

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒)/2  
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 𝑅𝑒𝑠𝑑,ℎ
𝑒𝑥𝑐𝑒𝑠𝑠,3

 = minimum(𝑅𝑒𝑠𝑑,ℎ
𝑜𝑢𝑡𝑝𝑢𝑡

+ 𝑅𝑒𝑠𝑑,ℎ−1
𝑜𝑢𝑡𝑝𝑢𝑡

+ 𝑅𝑒𝑠𝑑,ℎ−2
𝑜𝑢𝑡𝑝𝑢𝑡

,   𝐶𝑜𝑚𝑝𝑑,ℎ
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 +  𝐶𝑜𝑚𝑝𝑑,ℎ−1

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 +

 𝐶𝑜𝑚𝑝𝑑,ℎ−2
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒)/3  

The first definition counts resistance as “excess” if it could have been met with 

unused compressor capacity from the same hour. The second definition looks at a 

rolling two-hour window, comparing resistance usage in each window to unused 

compressor capacity in that same window and dividing by two because of 

systematic double-counting. And the third definition uses a three-hour rolling 

window.  

3. Define metric for overall excess resistance as a fraction of total thermal output. 

𝑅𝑒𝑠𝑒𝑥𝑐𝑒𝑠𝑠,1 =
∑ 𝑅𝑒𝑠𝑑,ℎ

𝑒𝑥𝑐𝑒𝑠𝑠,1
𝑑, ℎ

∑ (𝑅𝑒𝑠𝑑,ℎ
𝑜𝑢𝑡𝑝𝑢𝑡

+ 𝐶𝑜𝑚𝑝𝑑,ℎ
𝑜𝑢𝑡𝑝𝑢𝑡

)𝑑, ℎ

 

𝑅𝑒𝑠𝑒𝑥𝑐𝑒𝑠𝑠,2 =
∑ 𝑅𝑒𝑠𝑑,ℎ

𝑒𝑥𝑐𝑒𝑠𝑠,2
𝑑, ℎ

∑ (𝑅𝑒𝑠𝑑,ℎ
𝑜𝑢𝑡𝑝𝑢𝑡

+ 𝐶𝑜𝑚𝑝𝑑,ℎ
𝑜𝑢𝑡𝑝𝑢𝑡

)𝑑, ℎ

 

𝑅𝑒𝑠𝑒𝑥𝑐𝑒𝑠𝑠,3 =
∑ 𝑅𝑒𝑠𝑑,ℎ

𝑒𝑥𝑐𝑒𝑠𝑠,3
𝑑, ℎ

∑ (𝑅𝑒𝑠𝑑,ℎ
𝑜𝑢𝑡𝑝𝑢𝑡

+ 𝐶𝑜𝑚𝑝𝑑,ℎ
𝑜𝑢𝑡𝑝𝑢𝑡

)𝑑, ℎ

 

 

Analysis Period 

The analysis period for the thermostat telemetry data is typically defined and can 

extend over multiple years. At the same time, operational changes are not 

uncommon, and many sites exhibit a clear change in operation at some point over 

longer time horizons.  

The Apex team has included a procedure to calculate a separate set of metrics in 

each year in addition to using the entire dataset. For cooling, the years are split on 

January 1 and for heating, they are split on July 1 to get contiguous cooling and 

heating seasons, respectively. So, for every thermostat, in both heating and cooling 

seasons, there will be one set of all metrics for the full analysis period and one set 

for each “seasonal year” (Jan 1–Dec 31 for cooling, Jul 1–Jun 30 for heating).  

For each thermostat, the Apex team will investigate the best metric set for the 

correlation analysis using the model fit parameters captured. 

 

No-HVAC Temperature Constants 

Description 
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The average rate of indoor temperature increases and decreases relative to the 

indoor-outdoor temperature difference when the HVAC systems are not actively 

heating or cooling. Four separate metrics are calculated: a heat gain constant and a 

heat loss constant during cooling and heating seasons. 

Why is the Apex team calculating this metric? 

The variable will allow the team to control for different building shell conditions and 

serve as a proxy for building stock. A higher value for these temperature constants 

indicates rapidly changing indoor temperatures caused by poor insulation or air 

sealing, among other factors. The impact of thermostat control on energy use is 

expected to depend on building shell conditions, so these variables may be used as 

control variables in the energy use correlation.  

How is this metric calculated? 

1. Create an hourly time series with heating/cooling runtime and indoor/outdoor 

temperatures. 

2. Calculate the hourly temperature change rate. This is the difference between 

indoor temperature (𝐼𝑇) in the current hour minus the previous hour divided by the 

difference between indoor and outdoor (𝑂𝑇) temperature difference in the current 

hour. 

𝑇𝐺𝑑,ℎ =
(𝐼𝑇𝑑,ℎ − 𝐼𝑇𝑑,ℎ−1)

(𝑂𝑇𝑑,ℎ − 𝐼𝑇𝑑,ℎ)
 

 

3. Heat gain constant: calculate the average temperature change rate for the hours 

when the outdoor temperature exceeds the indoor temperature, and the heating 

and cooling runtimes are under 5 minutes.  

4. Heat loss constant: calculate the average temperature change rate for the hours 

when the indoor temperature exceeds the outdoor temperature, and the heating 

and cooling runtimes are under 5 minutes. 

HVAC Temperature Constant 

Description 

The average rate of indoor temperature increases or decreases relative to the 

indoor-outdoor temperature difference during times when the HVAC systems are 

actively heating or cooling. Two separate metrics are calculated during cooling and 

heating seasons. 

Why is the Apex team calculating this metric? 
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The variable should allow the team to control for different levels of HVAC 

performance. A higher value for these constants indicates a home that is rapidly 

heated or cooled by its HVAC system (potentially due to an oversized system, for 

example), while a lower value indicates a home with a slower temperature response 

(undersized system). The impact of thermostat control on energy use is expected to 

depend on HVAC response, so these variables may be used as control variables in 

the energy use correlation. 

How is this metric calculated? 

1. Calculate the hourly temperature change rate as explained previously. 

2. In the heating season: Calculate the average temperature change rate for the 

hours when the indoor temperature exceeds the outdoor temperature, and the 

heating runtime is over 15 minutes. 

3. In the cooling season: Calculate the average temperature change rate for the 

hours when the outdoor temperature exceeds the indoor temperature, and the 

cooling runtime is over 15 minutes. 

Indoor Temperature Variance 

Description 

A quantification of indoor temperature variation during heating and cooling seasons 

as a proxy for the use of thermostat features. 

Why is the Apex team calculating this metric? 

This simple metric that should be highly correlated with the runtime reduction 

metric calculated by the standard ENERGY STAR software. Its inclusion will allow 

the team to explain findings related to the base ENERGY STAR software metrics, 

without assumptions about each individual’s baseline. If indoor temperature 

variance is the only meaningful portion of the runtime reduction calculation with a 

comfort temperature, it will correlate just as well with energy savings. 

The EPA specification does not include any scheduling information, so it cannot 

quantify occupant behavior and thermostat use preferences. This metric is intended 

to test whether the team can control for occupant behavior on thermostat savings. 

Higher indoor temperature variance should correspond with higher use of 

thermostat scheduling and setbacks, whereas a customer that uses a smart 

thermostat as a manual thermostat with a constant temperature hold should 

experience minimal variance in the indoor temperature (and correspondingly 

minimal energy savings). 
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How is this metric calculated? 

1. Overall temperature variance: The standard deviation of indoor temperature 

separately calculated across all hours in the heating and cooling seasons. 

2. Weekly temperature variance: The standard deviation of indoor temperature in a 

typical week, separately calculated across the heating and cooling seasons. This is 

done by first grouping hourly temperature values by the hour of week. 

Sigmoid Model Parameters for Resistance Heat 

Description 

Three additional metrics that can be used individually or in combination to reflect 

the reduction in resistance heat utilization caused by a smart thermostat. 

Why is the Apex team calculating this metric? 

It is not yet known whether DNRU will sufficiently capture the relationship between 

resistance heat utilization and energy savings. These metrics are intended to 

provide additional parsimonious metrics that can serve as an alternative in the 

correlation analysis. Resistance utilization by temperature bin has a sigmoid 

functional form, and fitting such a curve by thermostat will allow the resistance 

utilization behavior to be described in either two metrics to describe the full 

behavior across bins or one totaled metric to provide a single input for correlation 

analysis. 

How is this metric calculated? 

1. Calculate 𝑅𝑈𝑏𝑖𝑛, by following steps 1-3 under the Demand Normalized Resistance 

Utilization metric. 

2. Fit a sigmoid (reverse S-shaped) model using the temperature bin midpoints 

(𝑇𝐵𝑀𝑏𝑖𝑛) as the independent variable and the resistance heat utilization as the 

dependent variable. This model will yield two parameters, 𝜇 (the average 

temperature below which resistance heat is used more than 50% of the time) and 𝜎 

(the temperature delta required to go from 33% resistance utilization to 67% 

resistance utilization). 

𝑅𝑈𝑏𝑖𝑛 =  
1

2
 × (1 − erf (

𝑇𝐵𝑀𝑏𝑖𝑛 −  𝜇

𝜎 × √2
)) 

3. Integrate the sigmoid function over all temperatures between 0 and 60°F to yield 

a third metric – the sigmoid integral.  
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Appendix 2: Billing Analysis Details 

Appendix 3: Correlation Analysis Details 

. 

https://neea.org/img/documents/Appendix-2-Consumption-Analysis-Northwest-Smart-Thermostat-Research-Study.xlsx
https://neea.org/img/documents/Appendix-3-Correlation-Analysis-Northwest-Smart-Thermostat-Research-Study.xlsx



