Products Coordinating Committee

Q2 2024 Meeting

Day 1 Monday, June 24, 2024 12:30 – 4:10 pm, Pacific Time

©2024 Copyright NEEA.

This meeting will be recorded and transcribed

Tools for Today: Engaging on Teams

2 | ©2024 Copyright NEEA.

<u>Heads up:</u> "Spotlighting" Speakers

Collective Role – Working Together

- Share your organization's activities
- Come prepared to actively participate
- Be transparent
- Identify any potential conflicts/challenges
- Flag any potential opportunities to leverage
- Be present in the conversation and stay flexible

AGENDA

All times Pacific

Welcome, Agenda, Packet Review & Introductions
Regional Priority Topic • Advanced Heat Pumps – Coordination on planned or ongoing field studies/pilot studies/data collection
BREAK
Regional Roundtable
Recap, Next Steps, Adjourn

5 | ©2024 Copyright NEEA.

Packet Review & Informational Updates

Tier 1: Agenda Items

- ✓ Memo: Coordination on planned or ongoing field/pilot studies/data collection (pg.5)
- ✓ Memo: Heat Pump Measure Development updates by Regional Technical Forum (pg. 6)
- ✓ Memo: Coordinating Committee Assessment (pg. 7-8)
- ✓ Q3 Regional Priority Topic Check In; Heat Pump Water Heater (pg. 9)

Activity Reports

- ✓ Heat Pump Water Heater (pg. 12-15)
- ✓ Advance Heat Pump (pg. 16-20)
- ✓ Retail Products Portfolio (pg. 21-24)
- ✓ High-Performance Windows (pg. 25-28)

Tier 3: Additional Resources (links on pg. 3)

Committee materials (charters & recent meeting resources, functional newsletters (Market Research & Eval, Emergeneration)

Name

- Organization
- And....

XX

7 | ©2024 Copyright NEEA.

AGENDA

All times Pacific

12:30 -1:00 pm (30 mins)	Welcome, Agenda, Packet Review & Introductions
1:00 - 2:30 pm (90 mins)	Regional Priority Topic Advanced Heat Pumps – Coordination on planned or ongoing field studies/pilot studies/data collection
2:30 – 2:40 pm	BREAK
2:40 – 4:00 pm (80 mins)	Regional Roundtable

8 | ©2024 Copyright NEEA.

Advanced Heat Pumps

Committee Presentation on planned or ongoing field studies/pilot studies/data collection

6/24/2024

9 ©2024 Copyright NEEA.

>

Desired Outcomes

- Build awareness of regional research and findings
- Uncover duplicative efforts
- Gain input from peers
- Open opportunities for collaboration or coinvestment

Today's Presenters and Topics

ORG	PRESENTER	ТОРІС
Chelan	Josh Mitchell	Heat pump update
Avista	Leona Haley	Hybrid and cold climate heat pump pilot
Emerald PUD	Tyler Boehringer	Measure Cost Effectiveness Calculator
Energy Trust	Andrew Shepard	Heat pump research
BREAK	BREAK	BREAK
PSE	Will Dixon	Heat pump research
Tacoma Power	Rich Arneson	Heat pump research
BPA	Nathan Kelly	High Performing Heat Pumps
NEEA	Christopher Dymond	Low Load Efficient lab research Cold climate room HP field research

Keeping on Track

- Speakers: Keep brevity in mind
- Audience: Questions in chat. (Identify which speaker or org your Q is directed towards)
- Follow up questions at the end if time allows

Josh Mitchell josh.mitchell@chelanpud.org

©2024 Copyright NEEA.

Chelan Co PUD Heat Pump Update

6/24/2024

Current State of HP Affairs

- Rebate offering of \$3500/\$4000(variable)
 - How do we come up with these numbers?

Program:		31 Variable Sp	peed Heat Pu	umps with PTC	CS Single F	amily - Exist	ng PICS Co	nversion of b	lectric FAF 1	o Heat Pum	b Baseline: I	Electric For	ced Air Furna	ce w/ Air Co	nditioning						
Quantity	14	10		PUD ra	ate schedule	Residential,	Sch. 1														
Units	Ea	ch		Retail r	ates, \$/kWh	\$ 0.0270	Ince	entive Rate =	\$0.680 per l	Wh				Tot	al Energ	v Saving	s Profil	e. kWh r	er Hou	r	
Energy savings per unit, kWh/Unit	5,88	35	R	etail demand cl	harge, \$/kW	\$ -										, outing		-)		,	
Energy savings w/o take-back, MWh/Yr	823.8	34		Retail ra	ate increase	0.2%			(0.80) 4	(0.20)	(0.20)	(0.20)	(0.20)	(0,20)	0.40	0,40		1.1.1.		
Take-back / rebound effect	0%			Discour	nt rate, PUD	7.0%			292.80	31	0.40	3	00								
Cost per unit	\$9,622.	17		Discount rate	e, Customer	7.0%			-0.2739	6		5	00							+++-	
Total installed cost	\$1,347,1	04	Discount r	ate, Society (71	th Pwr Plan)	7.0%			(9.6)		2	250		and the second s						
Financial incentive per unit	\$4,000.	00			Inflation	2.5%						-		/				A DECEMBER OF			
Total incentive amount	\$560,0	00	Post	mkt forecast es	scalation, %	3.0%						H/H	200								
Service life, yrs	1	15		Forward	mkt update	12/26/23						Ŵ	150								Concession in the local diversion of the loca
PUD meter and verify costs		\$0	Measu	re's calculated	peak kW-Yr	450.6	in the second second														
First year PUD admin. costs		\$0	Loca	al distribution sy	ystem credit	\$66.00	\$/kW-Yr						100								
Customer O&M costs (savings) per Unit	\$0.	00	Capacity and	resource adeq	uacy credit,	\$72.80	\$/kW-Yr						50	////	77						
Societal benefits (cost) per Unit	\$0.	00 % of add	ed capacity va	alue (100%=All	, 0%=None)	70%								///	///	111	11	///	17		E Nov
Environmental benefits (cost) per Unit	\$0.	00											0 +	44	///	///	///	///	///	1	Sep
\$145.93	Levelized Va	alue of Wholesal	e Energy, S/N	/Wh = NPV (W	/holesale En	ergy+Capacity	/+Carbon Free	e) / NPV (Tota	al MWh/Year	v Take-Back)			1 2 3	4 5 6			///	///		/ / /	Jul
140%	Customer			PUD with Rate	Impact		Utility's Cost	Test		Project's To	tal Resource	Cost		0	/ 8 9 10	0 11 12		4//	/ /	/ / /	/ M
. 14070	Low Rates	Expected	High Rates	Low Mkt	Expected	High Mkt	Low Mkt	Expected	High Mkt	Low Mkt	Expected	High Mkt				12 13	14 15	16 17 17	1 1		Mar
Net Present Value (NPV)		-\$581,748	8		\$329,628		1	\$534,984	1	1	-\$252,120					Hour		-/ 18	19 20 21	22	- Jan
B312976 Cost Ratio		0.26			1.59			1.96			0.81									22 23	24
Internal Rate of Return (IRR)		< 0			15%			20.0%			4%						Transmissio	n			
Payloggk Begins in Year		Never	/		6			5			12		Total V	Vholesale	Carbon D	listribution	RA				
Levelized Value of Energy Savings, S/MWVh		\$27.3	2		\$145.93			\$145.93	3		\$145.93		\$145.93	\$82.08	\$10.71	\$25.27	\$27.87				
Levelized Cost, S/MWh		\$104.90	D		\$102.00			\$74.63			\$179.53										
, 80%																					
3	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
S n60%al	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044 2
Retail Rates, \$/mwh	\$ 27.0	0 \$ 27.05	\$ 27.11	\$ 27.16	\$ 27.22	\$ 27.27	\$ 27.33	\$ 27.38	\$ 27.44	\$ 27.49	\$ 27.54	\$ 27.60	\$ 27.66 \$	27.71	\$ 27.77	\$ 27.82	\$ 27.88	\$ 27.93	\$ 27.99	\$ 28.04	\$ 28.10 \$
Fozigg Annual Flat Rate, \$/MWh		\$ -	S -	S -	S -	s -	\$ -	S -	\$ -	\$ -	s -	\$ -	S - S	-	S - S	5 -	\$ -	S -	S -	\$ -	s - s
Hourly Market Value, \$/MWh		\$ 80.82	\$ 86.59	\$ 87.59	\$ 84.20	\$ 81.91	\$ 81.91	\$ 80.71	\$ 80.44	\$ 79.98	\$ 80.09	\$ 79.87	\$ 79.92 \$	79.85	\$ 79.78	\$ 79.67					
Energy Savings, MWh/Year		824	824	824	824	824	824	824	824	824	824	824	824	824	824	824	0	0	0	0	0
Energy Savings, aMW		0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.000	0.000	0.000	0.000	0.000
Value of Wholesale Energy		66,582	71,340	72,162	69,370	67,481	67,481	66,494	66,272	65,892	65,980	65,804	65,843	65,780	65,724	65,637	-	-	-	-	-
Wholesale Energy Carbon Free		5,122	5,576	6,068	6,602	7,181	7,810	8,483	9,212	10,002	10,857	11,783	12,786	13,870	15,045	16,315	24		12	-	
Retail Energy C2st Savings 5 6 7 8	9 10 11	12 13 34235	5 16 27.318	19 2022182	2 2322422	22,467	22,512	22,557	22,602	22,647	22,693	22,738	22,784	22,829	22,875	22,921	-	120	-	-	1929
Local Distribution System Credit		20,818	20,818	20,818	20,818	20,818	20,818	20,818	20,818	20,818	20,818	20,818	20,818	20,818	20,818	20,818	0	0	0	0	0
Bulk Transmission System Credit		22,963	22,963	22,963	22,963	22,963	22,963	22,963	22,963	22,963	22,963	22,963	22,963	22,963	22,963	22,963	0	0	0	0	0
	1 017 10	24																			

Current State of HP Affairs (cont'd)

- Still requiring Commissioning of Systems to PTCS standards
- Heat Pumps are providing over 50% of the savings of our Residential Portfolio

MANUFACTURER AHRI REFERENCE #		OUTDOOR UNI	T MODE	_ #
INDOOR UNIT MODEL #	INSTALL DATE	SEER2	HSPF	2
WHEN SYSTEM FAN IS ON, DOES AIR FLOW Ff f no, then disconnects should be fixed.	ROM ALL SUPPLY REG	STERS?	🗌 Yes	🗌 N
E MAXIMUM EXTERNAL STATIC PRESSURE	XTERNAL STATIC PRES IANUFACTURER REQU	SURE MEETS IREMENTS?	Ves	N
REFRIGERANT CHARGING METHOD MEETS M	ANUFACTURER CHAR	GING METHOD?	🗌 Yes	N
SUPPLY AIRFLOW MEETS MANUFACTURER RE	QUIREMENTS?		🗌 Yes	
SUPPLY AIRFLOW MEETS MANUFACTURER RE	QUIREMENTS?		🗌 Yes	
3 NEW EQUIPMENT	QUIREMENTS?		Yes	
SUPPLY AIRFLOW MEETS MANUFACTURER RE	QUIREMENTS?	DOR UNIT MODEL #	Yes	
SUPPLY AIRFLOW MEETS MANUFACTURER RE	QUIREMENTS?	DOR UNIT MODEL #	Yes	N
SUPPLY AIRFLOW MEETS MANUFACTURER RE	QUIREMENTS?	DOR UNIT MODEL # HSPF2 on page 3)	Yes	
SUPPLY AIRFLOW MEETS MANUFACTURER RE	QUIREMENTS?	DOR UNIT MODEL # 12 HSPF2 on page 3)	Yes	
SUPPLY AIRFLOW MEETS MANUFACTURER RE	QUIREMENTS?	DOR UNIT MODEL # HSPF2 on page 3) AGE/CAPACITY TESTED7 D: PILTER SLOT D: PILTER GRULE	Yes	
SUPPLY AIRFLOW MEETS MANUFACTURER RE	QUIREMENTS?	DOR UNIT MODEL # HSPF2 on page 3) =REF/CAPACITY TESTED? =RITER SLOT D?RITER GRILLE ECTION FACTOR	Yes	

PAGE 1 OF 4

11 CFM/TON (OR #10 / #2)

Why Does Chelan want to see a Cold Climate Standard Regionally

Heat Pump Actual Use Case Study

Residential Variable Speed Heat Pump

Before and After Energy Use Comparison

- Cory Schramm- Energy Efficiency Intern
- Josh Mitchell- Residential Energy Efficiency Advisor
- Jim White- Senior Energy Efficiency Engineer

Solid Results with Some Installs

Property Number 4

- HP Brand: American Standard
 - Indoor: TEM8A0C48V41+TDR
 - Outdoor: 4A6L9048A1
- Thermostat: American Standard
 - ACONT850AC52UA
- Sqft: 1,740
- Heating Savings: 10,522
 KWh
- Cooling Savings: 75 KWh
- Installer E
- Same Owner

Less with Others

Property Number 22

www.chelanpud.org

Property Number 22 Continued

Who is going to run a compressor with snow up to their eaves?

Mixed Reviews on Other Installs

Property Number 32

Summary of Findings

- Reviewed 104 Heat-pumps that were installed to PTCS standards during 2020-2022 (That had enough heating load data)
 - Half of these installations increased load on the grid (average increase of 1,000 kWh per year)
 - 8 showed similar savings to deemed, 41 showed nearly triple the deemed savings
 - Surprising amount of the savings came from cooling
- No clear correlation between equipment, installer, thermostat, and savings outcome
 - Chelan PUD's theory is that the lack of savings is related to people's use of emergency heat.
 - Different homeowners, home remodels, etc. also play a role in savings.

What did we do differently?

- Realized we are not ready to pay for capacity of a Cold Climate Heat Pump!!
- We met individually with all Contractors and showed them their installs (good, the bad and the ugly).
- Communicated the importance of proper installation, educating their customers, using proper settings with the thermostat
- Preliminary results are showing improvements in installs done post meeting with contractors

Thank you!

Josh Mitchell, Chelan PUD josh.mitchell@chelanpud.org

©2024 Copyright NEEA.

Leona Haley

Leona.Haley@avistacorp.com

©2024 Copyright NEEA.

About Avista

- Celebrating 135 years of service
- Headquarters: Spokane, WA
- **Employees:** 1,700+
- Service territory:
 - Washington
 - o Idaho
 - Oregon

• Customers served (approx.):

- 408,000 electric
- o 374,000 natural gas

Avista Heat Pump Pilot – Field study

• Study size: 12 Homes

Hybrid heat pumps

 $\circ~$ 3 homes with sufficient insulation, 3 with poor insulation

- Cold-climate heat pumps

o 3 homes with sufficient insulation, 3 with poor insulation

Avista Heat Pump Pilot – Objectives

Customer

- Experience
 - Pre-installation
 - Installation
 - System operation
 - Behavior change

Trade Ally

- Needs
 - Promotion
 - Support
- Installation
 - Best practices

Weatherization

- Impacts to
 - System performance
 - Customer behavior with system operation

Avista Heat Pump Pilot – Eligibility

Premise requirements

- Location: Spokane County Washington
- Metering: Smart meter
- **Style:** Single-family
- Occupancy: Owner-occupied
- **Existing HVAC:** Natural gas furnace with central airconditioning

Customer commitment

- 2-year pilot term

Avista Heat Pump Pilot – Status

Partners selected

Holliday Heating, Cooling and Electric DNV

Recruitment underway

Leveraged Bidgely tool to identify homes List scrubbed and finalized Recruitment email sent

Installation plan

Complete prior to 2024 heating season

Avista Heat Pump Pilot – Equipment

Heat-Pump

Performance Measurement

- HVAC metering
 - Power
 - Temperature
 - Humidity
 - Air-flow
 - Pressure
- Whole home metering
 - 5-minute electric (AMI)
 - Hourly gas (AMI)

Avista Heat Pump Pilot – Customer Participation

Avista Heat Pump Pilot – Marketing materials

Recruitment Email

Dear Customer,

Could your home benefit from a new heating and cooling system? If so, we're offering you an opportunity to participate in our new Heat Pump Pilot.

We need twelve (12) Avista customers with existing natural gas furnace and central air conditioning equipment in their homes to let us replace those systems with either a new dualfuel heat pump system or a new premium high-performance heat pump system.

Heat Pump Study Participant Application

Avista is looking for 12 Washington customers to take part in a two-year research study to evaluate the performance of hybrid¹ and cold-dimate heat pumps in our service territory. Our goal is to learn how cost-effective these new heating systems are for our region's dimate and to determine if they should be added to our customer rebate offerings. Selected participants will receive one of these premium high-performance systems at no cost. To apply, please complete and email the application form below to Leona.Haley@avistacorp.com.

Get a free HVAC system from Avista for joining our heat pump study.

Are you considering a new heating and cooling system? Avista is looking for 12 Washington customers to take part in a research study to evaluate the performance of hybrid! and cold-climate heat pumps in our service territory. If you choose to participate, Avista will replace your existing natural gas furnace and central air-conditioning system with one of these premium high-performance systems.

Avista Heat Pump Pilot – Participation documents

BID PROPOSAL FOR:

HOLLIDAY HEATING + COOLING + ELECTRIC IS PROPOSING THE FOLLOWING SCOPE OF WORK:

Avista Corporation East 1411 Mission Ave Spokane, WA 99202

Heat Pump Pilot - Participation Agreement

CUSTOMER INFORMATION

NAME (hereinafter the "Customer")

DAYTIME PHONE NUMBER

PROPERTY ADDRESS (physical address where equipment is installed) CITY, STATE, ZIP

NOTICE: THE EQUIPMENT MUST REMAIN AT THE PROPERTY ADDRESS ABOVE THROUGHOUT THE PILOT TERM.

PROGRAM PARTICIPATION REQUIREMENTS

Customer, residing at the Property Address set forth above (hereinafter the "Property"), elects to participate in the Avista Heat Pump Pilot program ("Pilot"), freely, voluntarily and without duress, and further agrees to the terms and conditions in this Agreement. Avista and Customer are referred to herein individually as a "Party" or collectively as the "Parties".

Avista Heat Pump Pilot – Estimated timeline

Q3-2024 Installations complete

Q4-2026 Final evaluation report

Leona Haley, Avista Leona.Haley@avistacorp.com

Emerald People's Solution Utility District

Tyler Boehringer tylerb@epud.org

Emerald People's Utility District

EE Cost Effectiveness Calculator Development

BPA Slice Customer

- Historic Market Power Prices
- Bigger emphasis on EE

How can we get more EE? Pay more for it.

- How to justify it?
- EE Savings shapes
- Which measures should we value more?
- Which measures save when we need it?
- How much should we be paying?

We needed:

-Identify measures to focus on -Determining what we should be paying

What we got:

-A user-friendly tool -Data to back our program offerings

	Sector																	
	Residential												i i	1	Banafit	Cost Ratios		
					8		Non-								Dellenter	LOST Matios		
					Energy		Energy	Measure		BPA	Avoided	Avoided						
					Savings	Life	Impact	Cost	Incentive	Payment	Cost	Cost				UCT w/		Maximum
4	# Measure Name		End Use	Building Type	(kWh/yr)	(yrs)	(\$/yr)	(\$)	(\$)	(\$)	Scenario	Value	NEI	TRC	UCT	BPA Credit	Participant	Incentive
	1 ASHP Conversion - \$2,000	Res SF AS	HP Conversion (no CAC)		1,386	13	\$0	\$3,000	\$1,300	\$600	Low	\$1,736	\$0	0.6	1.3	2.5	0.6	\$1,736
											Base	\$2,821	\$0	0.9	2.2	4.0	0.6	\$2,821
											High	\$3,962	\$0	1.3	3.0	5.7	0.6	\$3,000
	5 I. I. I.	Calculator							c	40.01	D 1 1			10	11:1.4	0		
	Instructions	Calculator	Measure Value	Assumptions	Avoided	Cost Cald	C Load	snape Ir	nto 2x	12 Shap	e Detail	Low A	L Ba	ase AC	High A	C	+ :	4 6

Thank you!

Tyler Boehringer, Emerald PUD tylerb@epud.org

Energy Trust of Oregon

Andrew Shepard andrew.shepard@energytrust.org

Energy Trust 2024 Research

2024 R&I Schedule – Active Projects

General Research & Planning

Coordinated Research Project

Program Delivery Pilot

Post-Research Summary Memo/Evaluation

2024 R&I Schedule – Pending & In-Progress Activities

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Micro-HP's	<u>></u>	Research	Planning									
Mild Climate (LLE)HP	Rese	arch Plan	ning	PDP Decision			Ongoir	ng Researc	h/PDP Act	tivities		
Duct Treatment	\square	PDP Approval Form	PDP Dev	elopment	Submit Research Plan	<u>></u>		Ongoir	ng PDP Act	tivities		
HP & DHP Improvements		Scoping Document		PDP/CRP Decision	<u>></u>		Ongoir	ng Researc	h/PDP Act	tivities		
Mixed Delivery HP's	>	Research	Planning		Scoping Document	>		Ongoing	General R	esearch		
Attic Air Sealing				Scoping Document	<u>></u>	On	going Ger	eral Resea	arch? Hold	until 202	5?	
CPF Reengagement	Scoping Document					Ongoing	General R	esearch				
Gas Furnace Upgrade w/CAC					No	2024 Activ	vities Plan	ned				

General Research & Planning

Program Delivery Pilot (PDP)

Coordinated Research Project (CRP)

Post-Research Summary Memo

HP & DHP Delivery Improvements

Status Update:

- HP/DHP Commissioning & Servicing Scoping Memo Submitted 2/29/24
- Memo circulated with broader ETO team 3/21/24
- ETO comments/feedback pending

Next Steps:

- PMC to receive ETO feedback
- Pending comments/support, develop field research strategies and implementation plan

Research Objectives:

- Can program improve realized savings of HP/DHP measures through combination of enhanced eligibility screening, increased installation requirements and/or improved on-site data collection & review?
- Consider recent RTF statements re: HP's refocused on EFAF displacement and upcoming MAD expiration

Potential Outcome(s):

- Increased realized savings for current HP & DHP offers
- Foundation for new HP & DHP commissioning incentive
- Potential increased incentive for projects meeting prescribed screening and installation requirements

Market Segment Served:

- All residential HP & DHP customers
- Prioritization of rental, rural & communities of color

Duct Treatment

Duct Treatment	\sum	Approval Form	PDP Dev	elopment	Implement. Plan	$\boldsymbol{\Sigma}$		Ongoir	ng PDP Act	ivities			
		PDP]	1				
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	

Status Update:

- Duct Sealing PDP Approval Form Submitted 2/29/24
- Memo circulated with broader ETO team 3/21/24
- ETO comments received 3/26/24

Next Steps:

• PMC to review and respond to ETO comments by 4/3/24

Research Objectives:

- Can Energy Trust fill a gap in duct treatment as a direct service?
- How can this work be designed to maximize the savings : cost ratio?
- What does customer acquisition look like?
- Can this be an enhancement to other HP/Gas Furnace measures?

Potential Outcome(s):

- Return of duct sealing savings
- Improved performance of existing and new heat pumps and gas furnaces

Market Segments Served:

- All site-built single family homes
- Emphasis on income-qualified, rental and prioritized communities

Thank you!

Andrew Shepard, Energy Trust of Oregon andrew.shepard@energytrust.org

Seattle City Light

Lars Henrikson Lars.Henrikson@seattle.gov

Thank you!

Lars Henrikson, Seattle City Light Lars.Henrikson@seattle.gov

5 Minute Stretch

Puget Sound Energy

Will Dixon William.Dixon@pse.com

Thank you!

Will Dixon, Puget Sound Energy William.Dixon@pse.com

Rich Arneson rarneson@cityoftacoma.org

Tacoma Heat Pump Research

Understanding Drivers of Winter Peak Impacts from Ducted HPs

June 20, 2024

Phase 2 Project Objectives

Phase 2 of this project has two objectives, to identify

- What's causing these spikes?
- What are barriers and opportunities for future interventions?

Phase 2 Objectives

What's likely causing these demand spikes?

- What kind of heating equipment is present in the home?
- Are there other big loads that could be causing spikes?
- Thermostat type and set-back settings?
- HP control settings?
- What are expected energy vs demand impacts?
- What are barriers and opportunities for future interventions?
 - Reasons for thermostat settings
 - Willingness to adjust thermostat settings
 - Willingness to change HP control settings
 - Willingness to install new thermostat
 - Willingness to have thermostat settings changed by program

Current Status

Population and sample identified
 Estimated potential impacts

Find study partners for co-funding
Planning/survey instrument work through the summer
Survey launch in the fall
Onsite visits during the winter (assumes co-funders)
Analysis and report early summer

Load Shapes by Classification

Medium Spike ~25% Low Spike ~62% High Spike ~13% (> 1.5 kW; < 5 kW Diff)(< 1.5kW) (>5 kW Diff) 40 40 40 Hourly Average Power (kW) 30 30 20 20 20 10 11 12 13 14 15 16 17 18 19 20 10 11 12 13 15 10 11 12 13 9 9 16 17 Hour Hour Hour Individual and Average, Combo sb 9 Days, 21F to 26F - Individual and Av Seattle PLevis 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 29 21 22 Hourd Day 4 5 5 7 8 9 10 11 12 Hour of Day Base Case HP Aca ane HP Aux USRy Prog Utility Prog

Phase 1 Results: Anticipated Outcomes

For every 1,000 HPs, ~1MW coincident peak demand reduction.

Size of Spike	Frequency	Observed Size of Demand Impact (kW)	Expected Peak Reduction
High (>5kW delta)	13%	8.6kW	5.3kW
Medium (>1.5 kW)	25%	2.9kW	1.1kW
Total	38%	4.8kW	2.5kW

- We anticipate ~2.5 kW of impact for sites that mitigate this demand spike.
 - Adjusted from observed to account for the non-heating portion and the reality that only a portion of the heating can be mitigated

Survey vs Onsite Summary

	Survey	On-site	Temperature Loggers
Heating equipment in the home	\mathbf{v}	v**	
Other big loads	V	V	
Thermostat type	V	V	
Thermostat settings	\checkmark	٧*	٧**
HP control settings	\checkmark	√ **	
Comfort	\checkmark	\checkmark	V
Reasons for thermostat settings	\checkmark	V	
Willingness/barriers to adjust t-stat settings	\checkmark		
Willingness/barriers to adjust HP controls	\checkmark		
Willingness/barriers to use a new thermostat	V		

** High value and reliability from the data collection approach

Timeline (Draft)

	2024										2025										
Task Name	1	2	3	4	5	6	7	8	91	0 11 12	2 1	2	3	4	5	6	7	8	9	10	11 12
Phase 1																					
Phase 2 Planning and AMI Analysis																					
Survey Design										_											
Conduct survey of customers																					
Reporting: Survey																					
Onsite design																					
Onsite data collection												Х									
Reporting: Onsite/Final																					

Full Study Presentation

Heat Pumps are Coming!

- Legislators of state, region and nation are encouraging heat pumps to mitigate the effects of climate change.
- A large-scale conversion is likely to have impacts on our utility systems, what should we study and prepare for?

Deep Set-backs = Demand Spikes?

- Early modeling suggests deep set-backs of HPs could lead to large morning peaks (i.e., demand spikes coincident with peak).
- Tacoma wants to learn if this happening in the real world, how often and why.

Single Site Example

- BPA study found a HP with aggressive setbacks with large demand spikes, likely due to auxiliary heat to warm the home in the morning.
- Once thermostat setting was stable, these spikes were mitigated.

Tacoma Study Overview

Phase 2: Understanding Drivers and Opportunities

(Fall 2024-Winter 2025)

Phase 3: Intervention(s) (TBD)

- Real-world evidence of HP demand spikes?
- How frequent is it?
- How big is the potential kW impact for mitigation?

Phase I Results – Real World Evidence

^{2,901} central HP sites with Tacoma Power AMI data.

Phase I Results – Individual Sites

- Poster child of HP demand spike
- Each site classified based on change in usage from overnight to morning during coincident peak days.
 - High Spike
 - Medium Spike
 - Low Spike

Load Shapes by Classification

Medium Spike ~25% Low Spike ~62% High Spike ~13% (> 1.5 kW; < 5 kW Diff)(< 1.5kW) (>5 kW Diff) 40 40 40 Hourly Average Power (kW) 30 30 20 20 20 10 11 12 13 14 15 16 17 18 19 20 10 11 12 13 15 10 11 12 13 9 9 16 17 Hour Hour Hour Individual and Average, Combo sb 9 Days, 21F to 26F - Individual and Av Seattle PLevis 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 29 21 22 Hourd Day 4 5 5 7 8 9 10 11 12 Hour of Day Base Case HP Aca ane HP Aux USRy Prog Utility Prog

Phase 1: How big might the impacts be?

For every 1,000 HPs,
~1MW coincident peak
demand reduction.

Size of Spike	Frequency	Observed Size of Demand Impact (kW)	Expected Peak Reduction
High (>5kW delta)	13%	8.6kW	5.3kW
Medium (>1.5 kW)	25%	2.9kW	1.1kW
Total	38%	4.8kW	2.5kW

We anticipate ~2.5 kW of impact for sites that mitigate this demand spike.

 Adjusted from observed to account for the non-heating portion and the reality that only a portion of the heating can be mitigated

Tacoma Study Overview

• What are barriers and opportunities for future interventions?

Tacoma Study Overview

Phase 2: Understanding Drivers and Opportunities (Fall 2024-Winter 2025)

Phase 3: Intervention (TBD)

Future intervention(s) will be based on Phase 2 research.

Intervention options may include:

- Thermostat setback changes
- Adjusting HP controls
- New thermostat
- BYOT thermostat

Phase 2 Objectives

What's likely causing these demand spikes?

- What kind of heating equipment is present in the home?
- Are there other big loads that could be causing spikes?
- Thermostat type and set-back settings?
- HP control settings?
- What are expected energy vs demand impacts?
- What are barriers and opportunities for future interventions?
 - Reasons for thermostat settings
 - Willingness to adjust thermostat settings
 - Willingness to change HP control settings
 - Willingness to install new thermostat
 - Willingness to have thermostat settings changed by program

Phase 2 Task Overview

- 1. Complete study planning and additional AMI analysis
- 2. Conduct survey of customers
- 3. Onsite data collection
- 4. Analysis and Reporting

Requires partner funding to proceed

1. Planning + Additional AMI Analysis

Finalize Planning

- Finalize sample, study tasks and objectives
- Discuss opportunities with partners

Understand daily spike vs coincident peak

- Identify those customers with near-daily high demand in the mornings
- These customers likely have energy savings opportunities

• Explore the impact of building characteristics on morning spikes

 Leverage Tacoma's household characteristic data to explore how important variables such as square footage and vintage affect morning peak patterns.

Identify additional sites with spikes of interest

• Some heat pumps may spike before or after the coincident peak windows; current metrics may not catch all setback spikes.

2. Conduct Survey of Customers

- Expect 25-30% response rate, resulting in ~400 respondents, incentive of \$25
- Sample stratified by high, medium, low; program participant vs non-participant

• Approach:

• Web survey with optional phone follow ups

Key survey topics:

- Understand all heating equipment, including back up
- HP satisfaction and comfort
- Presence and usage of other large loads (water heater, level II EV charger, hot tub, other)
- Thermostat type
- Thermostat settings
- Willingness to make future changes, with and without incentives

2. Survey Sample

- Tacoma identified ducted heat pump homes with county assessor data, contractor provided lists, and utility program participant lists.
- ~1,200 with high and medium spikes (key focus)

Category	# of HP Sites	# HP + AMI	<u>High Spike</u>	<u>Medium Spike</u>	<u>Low Spike</u>	
County Assessor Data	10,000	2,677	345	678	1,654	
High Performance HP Participants	500	225	18	59	148	
High-Capacity HPs	11	11	0	0	0	
Contractor List – estimate	500	250	33	63	154	
Total	11,011	3,163	396	800	1,956	

*Once we have 2024 non-cooling load data, we expect to be able to add approximately 174 high or medium spike participants in the county assessor and high performance HP data sets to the sample.

3. Onsite Data Collection Approach

Sample

- Nested sample within survey
- Sample size will depend on funding availability, 20-100
- Incentive of \$50 for initial visit, \$50 to mail back temperature logger

Key Topics

- Confirmation of all heating equipment, including back up
- HP Control settings
- Leave behind temperature logger
- Presence and usage of other large loads (water heater, level II charger, hot tub, miscellaneous other)
- Thermostat type
- Thermostat settings

Requires partner funding to proceed

Survey vs Onsite Summary

	Survey	On-site	Temperature Loggers
Heating equipment in the home	\mathbf{v}	v**	
Other big loads	V	V	
Thermostat type	V	V	
Thermostat settings	\checkmark	٧*	V**
HP control settings	\checkmark	√ **	
Comfort	\checkmark	\checkmark	V
Reasons for thermostat settings	\checkmark	V	
Willingness/barriers to adjust t-stat settings	\checkmark		
Willingness/barriers to adjust HP controls	\checkmark		
Willingness/barriers to use a new thermostat	V		

** High value and reliability from the data collection approach

Timeline (Draft)

	2024								2025												
Task Name	1	2	3	4	5	6	7	8	91	0 11 12	2 1	2	3	4	5	6	7	8	9	10	11 12
Phase 1																					
Phase 2 Planning and AMI Analysis																					
Survey Design										_											
Conduct survey of customers																					
Reporting: Survey																					
Onsite design																					
Onsite data collection												Х									
Reporting: Onsite/Final																					

Partnership Discussion

Request for Phase 2 Partners

- Without research partners, Tacoma is unable to:
 - Conduct on-site visits.
 - Conduct temperature logging.
 - Develop comprehensive, regionally-valuable instruments, analysis and reporting.

Requested funding support:

- Funding of on-sites and potentially temperature logging
- Workplan and Instruments
 - To incorporate partner feedback and ensure their needs are met in study design and instruments
- Reporting and analysis
 - Study to integrate partner goals into analysis
 - Study to report out on partner goals and ensure report is high quality for region

High-Level Budget Estimates

	Tacoma Budget	Partner Coordination and Onsite Funding*
Phase 1 Work	\$36,000	
Study Planning and AMI Analysis	\$18,000	\$25,000
Design/conduct survey of customers	\$54,000	\$25,000
Onsite data collection**	\$-	\$112,000
Temperature	\$-	\$46,000
Reporting and PM	\$25,000	\$50,000
	\$133,000	\$238,000

*Approximate, depends on # of partners and their needs

**Assumes 70 on-sites

Questions for Phase 2 Potential Partners

- What are the research objectives of your organization?
 - What do you want to learn about cold weather HP operation drivers?
 - Focused on energy or peak?
 - If peak, what type of peak?
- What decisions are you hoping to inform?
- What kind of timeline are you on for finding out the answers to your questions?

Next Steps

Continue with Phase 2, Step 1

- Additional AMI analysis
- Exploratory partnership meetings with external parties (SCL, PSE, NEEA, manufacturers)

Meet with internal Tacoma stakeholders for input

- Note: due to calendars, unable to meet until late July.
- Finalize Phase 2

Thank you!

Rich Arneson, Tacoma Power rarneson@cityoftacoma.org

Bonneville PowerAdministration

Nathan Kelly nckelly@bpa.gov

Product Coordination Council High Performing HPs

June 24th, 2024 Nathan Kelly BPA EE Engineering – Residential Tech Lead

Equipment Criteria and Selection Process

Save Energy

- Efficient operation, both when it's very cold out (the peak) AND at mild/low-load conditions (most of the heating load in many areas in PNW)
- Some combination of (1) ability to turn down well and (2) very good "low-speed" COP

Minimize Winter Peak

- High heating capacity maintained at low outdoor temperatures
- Minimize or Eliminate Resistance Heat

Minimize Summer Peak Contribution

Higher EER -> better peak COP

Equipment in the Field:

- Bosch, Carrier, Daikin, Lennox, Mitsubishi, Fujitsu, and Trane/American Standard

Research Partners, Sites, and Equipment Types

BPA Utilities/ Strategic Tribal Partner	Total Sites	Central Retrofit/New Installs	Central Existing Installs	Multizone Retrofit/New Installs	Multizone Existing Installs
Central Electric Coop	7	0	1	3	3
Inland Power	5	1	4	0	0
Snohomish PUD	5	0	3	0	2
Tacoma Power	17	10	0	1	6
Glacier Electric/ Blackfeet Tribe	2	0	0	2	0
Okanogan PUD/ Colville Tribe	10	0	0	10	0
Yakama Power/ Yakama Tribe	2	2	0	0	0
Total	48	13	8	16	11

Retrofit/New Installs

new equipment
installed selected with
HP HC HP criteria

Existing Installs – utility customers with newer equipment which met HP HC HP criteria

Early Findings

HPHC and HEMS – HVAC kWh/sqft vs. HDD

Setbacks 5-8AM

Learnings so far, what to share with industry

- Our "new install," lower balance point sites have less variation in performance, lower energy during very cold weather
- Standard metrics (box specs) do NOT appear to be predictive, pending deeper analysis
- The strong signals coming out of our study so far:
 - Sizing and "high-capacity" appear to work, with more benefit in colder weather
 - Utilities: set a target balance point!
 - The HPHCs can deliver the heating with little or no electric resistance heat at and around the balance point...

o ...unless the thermostat/setback control decides otherwise!

- Resistance heat coming out of set-back doesn't have to happen!

• ALL FINDINGS SO FAR ARE PRELIMINARY!

Upcoming Research

- Looking for opportunities for research partners for the following topics:
 - MF HPs including
 - Epocha (PTHP with no outdoor unit) and cold-climate Window Heat Pumps (window shaker-style replacements)
 - MF and SF new construction measure including low income
 - Specifically targeting Habitat for Humanity chapters
 - Heat Pump Sizing using historical load data
- Do you have suggestions for research topics?

Thank you!

Nathan Kelly, Bonneville Power Administration nckelly@bpa.gov

Christopher Dymond Product Manager cdymond@neea.org

Heat Pump Research Update

LLE Lab Research Room HP Field Testing Rating Representativeness

Christopher Dymond, Sr Product Manager

Low-Load Efficient Heat Pumps

When sized right, a variable speed heat pump spends most of its time running at part load.

VSHPs are 10-50% efficient when running at minimum output than at full output.

NEEA Specification differentiates those that are good at part load:

$MinCapCOP47 \ge 4.5$

LLE doesn't appear to cost more

Source: MN CEE/NEEA Variable Speed Heat Pump Product Assessment and Analysis https://neea.org/resources/variable-speed-heat-pump-product-assessment-and-analysis

Modeling and Analysis
Test Procedure Development and Influence (CVP)
OEM Interviews and Virtual Teardown (24 systems)
Lab Testing (6 systems)

- Lab Testing (6 systems)
- Physical Teardown (3 systems)
- Analyzing Field Data (BPA, RR and CEE)

Cold Climate Room Heat Pump
Cold Climate Room Heat Pumps

- Key innovation is use of an atomizer to get rid of condensate and melt water without need of melt water system or risk of freezing water dribbling down the side of the building.
- Two new products are entering the market that can operate below 5F
- These systems are available in limited production runs at a cost of \$3000-\$4000

Specs subject to change

	Outdoor Condition	Capacity (BTU/hr)	Efficiency
Cooling Mode	95 °F (35 °C)	9010	11.81 EER
	47 °F (8.3 °C)	9050	4.05 COP
Heating Mode	17 °F (-8.3 °C)	9060	2.42 COP
	5 °F (-15 °C)	9000	2.0 COP
Min Temp	-13 °F (-25 °C)	5050	1.41 COP
CEER		16	
SEER2		18.76	
HSPF2		10.12	
Indoor Sound	High	Low	Silent
Pressure Level	51 dB(A)	43 dB(A)	26 dB(A)
Unit Weight		130 lbs	

Specs subject to change

Electrical	Voltage	Phase	Circuit Amps
Requirement	120 VAC	60 Hz	15 A
	Outdoor Temp	Capacity	Efficiency
	95 °F (35 °C)	9000 BTU/h	10.0 (EER)
Thermal	47 °F (8.3 °C)	9000 BTU/h	4.00 (COP)
Performance	17 °F (-8.3 °C)	9000 BTU/h	2.60 (COP)
	5 °F (-15 °C)	7200 BTU/h	2.35 (COP)
	-7 °F (-21.7 °C)	4900 BTU/h	1.71 (COP)
Weight	125 lbs		
Refrigerant	R32		
Indoor Sound	High	Medium	Low
Level	47 dB(A)	44 dB(A)	38 dB(A)

*Specifications are subject to change.

Cold Climate Room Heat Pump

New Products Available
EPA Interim Test Procedure
Tax Credits begin
NW Field Testing Project?
Details at RETAC June 27th
Q4 2024
Q4 2024
Q4 2025
Q4 2024 - Q4 2025

Rating Representativeness "Test the Test"

Load Based Testing

Revealed Lower Performance and Rank Order Changes

Better ways of predicting and confirming installed system performance enable accurate product differentiation and increased utility support

System Installation and Instrumentation

- 6 Heat Pumps were field tested, but like a lab installation
 - Over 100 sensors per house, including \dot{m}

All units shipped to Lab

- Load based testing is statistically more representative of current M1 test procedure (static testing)
- M1 often overpredicts the performance of the units in both heating and cooling.

	Со	oling	Hea	ting
	SPE:07*	M1	SPE:07	M1
Ducted	13%	9%	11%	17%
Ductless	13%	43%	10%	64%
Combined	13%	22%	10%	36%

©2024 Copyright NEEA

* SPE-07 cooling error is from cooling bin-hours used in SPE:07 are skewed to mild hours

Questions and Discussion

Thank you!

Christopher Dymond, NEEA cdymond@neea.org

Thank you to all the Presenters

ORG	PRESENTER	TOPIC
Chelan	Josh Mitchell	Heat pump update
Avista	Leona Haley	Hybrid and cold climate heat pump pilot
Emerald PUD	Tyler Boehringer	Measure Cost Effectiveness Calculator
Energy Trust	Andrew Shepard	Heat pump research
BREAK	BREAK	BREAK
PSE	Will Dixon	Heat pump research
Tacoma Power	Rich Arneson	Heat pump research
BPA	Nathan Kelly	High Performing Heat Pumps
NEEA	Christopher Dymond	Low Load Efficient lab research Cold climate room HP field research

Break!

AGENDA

All times Pacific

12:30 -1:00 pm (30 mins)	Welcome, Agenda, Packet Review & Introductions
1:00 - 2:30 pm (90 mins)	Regional Priority Topic • Advanced Heat Pumps – Coordination on planned or ongoing field studies/pilot studies/data collection
2:30 – 2:40 pm	BREAK
2:30 – 2:40 pm 2:40 – 4:00 pm (80 mins)	BREAK Regional Roundtable

Committee Roundtable

Roundtable Focus

(NEEA PMs & PCC members first)

- Highlights since March
- Programmatic updates
- Organizational updates

Please aim for 3-5 min max, thanks!

Let's wrap it up!

See you tomorrow at 9:30 am June 25th 2024

