Low-Cost High-Temperature Thermal Storage for Load Shifting in Residential Applications

NEEA Product Council November 28, 2023

Introduction of Topic Christopher Dymond

NEEA

~ 15 min

Steffes Presentation

Al Takle Paul Steffes Steffes Steffes

~ 45 min

Thermal Storage

- Purpose
- Time Period
- Application
- Temperature Range
- Heat Source
- CapEx, OpEx
- Physical Space

District heating accumulation tower in Austria with a thermal capacity of 2,000,000 kWh

Todays Focus --- Residential Space Heat

- Purpose:
- Time Period:
- Application:
- Temperature Range:
- Source:

Space heating load shifting up to about 24 hours Single family housing 60-130°F Electricity

> How much heat do we need?

What if we wanted meet half a typical home's heating need for 4 hours when it is 36°F outside?

Amount

17,000 ÷ 2 x 4 hrs = 34,000 Btu ~10 kWh

Flow

Need 8,500 Btuh/hr to keep house warm

Building UA	500	Btuh/F
Tindoor	70	F
Toutdoor	36	F
DeltaT	34	F
Heat Loss per hour	17,000	Btu/hr

Residential Constraints

- Low Cost (end user price)
- Easy to install
- Meets building codes
- Doesn't take up much space

How about a 50-gallon water tank?

- How much of the stored energy is useable?
- How fast can it deliver this heat?
- What does it cost to replenish this heat?
- Are their any unrecoverable or non-useful standby losses?

- Two 50 gallon water heaters
- Hydronic wall heater
- Pump
- Thermostat
- Hardware Cost ~\$1800

Two 50-gallon hot water heaters

• First 4 hours

Second 4 hours

35,400 Btu 20,800 Btuh

* Assumes max temp = 165°F, Min temp 100°F

80 gallon Heat Pump Water Heater*

• First 4 hours

Second 4 hours

23,000 Btu 13,100 Btuh

* Assumes max temp = 135°F, Min temp 100°F

6.7ft³ of Phase Change Material*

- First 4 hours
- Second 4 hours

36,400 Btu 16,400 Btuh

Tank Temp at end of hour *149°F phase change, same hydronic fancoil

• First 4 hours

Second 4 hours

41,200 Btu 38,900 Btuh

*Charged to 500°F

Setback Recovery vs Storage

- 2,200 20,000 ft3 of air (6°F DeltaT)
- 5,600 2,000 ft2 of 5/8" sheetrock (3°F DeltaT)
 - 7,800 Heat needed to setback (6°F DeltaT for ~12 hrs)

Storage for same Size (6.7ft³ – volume of 50 gallon tank)

 8,300
 Hot Water (w/20°F DeltaT)
 110%

 31,700
 Phase Change Material
 410%

 77,800
 Bricks (w/400°F DeltaT)
 1000%

Heat Pump Defrost vs Storage

Defrost Energy Needs = 3-10 minutes @ 10 kW ~2,500Btu (rough average)

Storage for same Size (6.7ft³ – volume of 50 gallon tank)

8,300	Hot Water (w/20°F DeltaT)	332%
31,700	Phase Change Material	1268%
77,800	Bricks (w/400°F DeltaT)	3112%

4 hour Demand Response Call

34,000 Btu to provide 50% of typical home heating need when it is 34 F outside

Storage for same Size (6.7ft³ – volume of 50 gallon tank)

 8,300
 Hot Water (w/20°F DeltaT)
 24%

 31,700
 Phase Change Material
 93%

 77,800
 Bricks (w/400°F DeltaT)
 229%

Energy Recovery Is Key Determinant

Roundtrip Efficiency

- Efficiency of the recovery system
- Standby losses
 - Non-recoverable losses
 - Recoverable losses

Cost

- Time of use pricing
- Efficiency of recovery system

Carbon

- CO2 emissions could be much different during recovery

Thermal Electric Storage

While standby losses are recoverable, they are provided by electric resistance heating with a COP =1.0

In our example house*, maintaining the storage at 300°F, increases the energy consumption by 6% compared to a HP that is sized to meet 100% of the load.

*Tamb = 34 ° F, Heat Pump COP at 34°F = 2.5

Low-Cost, High Temperature Thermal Storage for Load Shifting in Residential Applications

Presented to the NEEA Product Council 11/28/2023

Agenda

- What is Electric Thermal Storage?
- Why is ETS important?
 - Peak Load Reduction
 - Renewable Integration
 - Enhanced Heat Pump Operation
 - Not all kWh is created equal
- How does ETS Compare to other Storage Options?

What is Electric Thermal Storage?

What is Electric Thermal Storage?

Storage of Renewable or Off-Peak Electricity in the form of Heat

Is this New Technology?

- Technology Started in Europe & Great Britain after WWII
- Came to North America in the early 1970's
- Today, there are hundreds of thousands of systems installed across North America.

It all began with Room Units

80,000 SYSTEMS INSTALLED SINCE 1987

COMFORT

2100 SERIES

Forced Air Heating

- Option Number 1
 - Stand Alone Furnace
- <u>Option Number 2</u>
 - Furnace w/ Air Conditioning
- Option Number 3
 - Furnace w/ Heat Pump

Forced Air Heating

Enhanced Heat Pump Performance

Storage of Renewable or Off-Peak Electricity in the form of Heat

 Electricity is stored as heat in a well insulated brick core.

- Combination of heat pumps and Electric Thermal storage maximizes home and the electric grid system efficiency.
- On-board controls regulate charging and discharging.
- Internal blower system delivers the heat to the conditioned space as needed to maintain total home comfort 24/7.

It's FULLY AUTOMATIC

A typical installation

Functions of High Temp TS with HP

- Setback Recovery
- No ER Defrost needed
- Load Shifting

Recharge storage with lower cost or lower carbon sourced electricity

Load Shifting with Heat Pump

2-Tone Two Speed Heat Pump - Portland, Oregon rane **4TWL9024A1** https://ashp.neep.org/#!/product/28391/7/25000///0

9100 Series ThermElect

Each Unit holds 480 kWh of thermal Storage 1.6 Million Btu

Connect them in parallel

Largest system to date = 23 Million Btu (14 units)

Heat Pump Water Heating

- Multi-Residential
- Up to 1500 gallons of Storage
- CTA-2045 for Utility Control
- Plug and Play Design

Why Electric Thermal Storage?

Societal Benefits

Beneficial Electrification

Q

Green House Gas Targets

De-carbonizaion

Grid Interactive Buildings

Not all kWh are Created Equal

← California ISO San Bernardino

Grid emissions intensity on a scale of 1 - 100 relative to other electric grids. In other words, lower on scale is the cleanest any grid gets and higher on the scale is the dirtiest any grid gets.

Resiliency

- Keeping the grid operational on the Coldest Days
- Coldest Days in the Northwest since 2002
 - Seattle 14
 - Portland 6
 - Spokane -22

Unit is only charged for the next 24-hour peak needs

"Buy" Low "Sell" High

Why Electric Thermal Storage?

Utility Benefits

Provides Grid Reliability, Stabilization, and Optimization

Q

Improves System Efficiency

Helps Integrate Large Quantities of Renewables

Product is Smart Grid compatible

Strategic Energy Sales

Off-Peak Hours:

- Those hours when demand for electricity is lower.
- Hours when the Power Company can provide electricity more economically and/or at a reduced price.

Typical Winter Load Profile

Hydro Quebec Results

Aggregate profile of heating power and storage temperature during the peak day of January 21, 2022

STEFFES

Renewable Integration

- Wide use of renewables requires storage
- ETS provides low cost, long life storage
- Use of renewables with ETS significantly reduces carbon footprint of home heating

What is the Utility Value

- Price of Purchasing Energy on the Coldest Days
- Price of Lower Carbon
- Generation Elimination or Deferral
- Transmission Elimination or Deferral
- Distribution Elimination or Deferral
 - \$500/kW
 - or
 - \$9000/kW
 - or
 - ????

Steffes Heating Systems

Electric Thermal Storage Provides "Double Green" benefits:

And

Economic

Environmental

Why Electric Thermal Storage?

Consumer Benefits

Operating Costs

Propane \$2.05/Gal - Nat. Gas \$1.05/Therm - Off-Peak \$.053/kWh

Estimated Annual Heating Cost Comparison

STEFFES

Steffes Connect CTA-2045 (OpenADR) Implementation

THANK YOU!

Stay connected with us at <u>www.steffes.com</u>.

Questions and Discussion

Example Daily Total Energy vs Temp of Storage

Effective Reduction in HP COP

49 | ©2022 Copyright NEEA.

HP has a COP of 2.5 @ 34F, COP slope = 0.32/F, Cap slope = 400 Btu/F

